Accuracy of prediction of yet-to-be observed phenotypes for food conversion rate (FCR) in broilers was studied in a genome-assisted selection context. Data consisted of FCR measured on the progeny of 394 sires with SNP information. A Bayesian regression model (Bayes A) and a semi-parametric approach (Reproducing kernel Hilbert Spaces regression, RKHS) using all available SNPs (p = 3481) were compared with a standard linear model in which future performance was predicted using pedigree indexes in the absence of genomic data. The RKHS regression was also tested on several sets of pre-selected SNPs (p = 400) using alternative measures of the information gain provided by the SNPs. All analyses were performed using 333 genotyped sires as training set, and predictions were made on 61 birds as testing set, which were sons of sires in the training set. Accuracy of prediction was measured as the Spearman correlation (_r(S)) between observed and predicted phenotype, with its confidence interval assessed through a bootstrap approach. A large improvement of genome-assisted prediction (up to an almost 4-fold increase in accuracy) was found relative to pedigree index. Bayes A and RKHS regression were equally accurate (_r(S)) = 0.27) when all 3481 SNPs were included in the model. However, RKHS with 400 pre-selected informative SNPs was more accurate than Bayes A with all SNPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225922PMC
http://dx.doi.org/10.1186/1297-9686-41-3DOI Listing

Publication Analysis

Top Keywords

genome-assisted prediction
8
food conversion
8
conversion rate
8
accuracy prediction
8
rkhs regression
8
sires training
8
training set
8
snps
6
prediction quantitative
4
quantitative trait
4

Similar Publications

Genomics-informed breeding of locally adapted, nutritious, albeit underutilised African crops can help mitigate food and nutrition insecurity challenges in Africa, particularly against the backdrop of climate change. However, utilisation of modern genome-assisted crop improvement tools including genomic selection and genome editing for many African indigenous crops is hampered by the scarcity of genomic resources. Here we report on the assembly of the genome of African yam bean (Sphenostylis stenocarpa), a tuberous legume crop that is indigenous to Africa.

View Article and Find Full Text PDF

Red perilla is an important medicinal plant used in Kampo medicine. The development of elite varieties of this species is urgently required. Medicinal compounds are generally considered target traits in medicinal plant breeding; however, selection based on compound phenotypes (i.

View Article and Find Full Text PDF

Genome assembly of the hybrid grapevine 'Chambourcin'.

GigaByte

July 2023

South Dakota State University, Agronomy, Horticulture and Plant Science Department and BioSNTR, Brookings, SD 57006, USA.

'Chambourcin' is a French-American interspecific hybrid grape grown in the eastern and midwestern United States and used for making wine. Few genomic resources are available for hybrid grapevines like 'Chambourcin'. Here, we assembled the genome of 'Chambourcin' using PacBio HiFi long-read, Bionano optical map, and Illumina short-read sequencing technologies.

View Article and Find Full Text PDF

Linn., which belongs to the family Lamiaceae, is a commonly used medicinal plant for heat clearing and detoxification. In particular, the roots of and the entire herb of have been widely used in traditional medicine for thousands of years.

View Article and Find Full Text PDF

Rice is a globally cultivated crop and is primarily a staple food source for more than half of the world's population. Various single-nucleotide polymorphism (SNP) arrays have been developed and utilized as standard genotyping methods for rice breeding research. Considering the importance of SNP arrays with more inclusive genetic information for GWAS and genomic selection, we integrated SNPs from eight different data resources: resequencing data from the Korean World Rice Collection (KRICE) of 475 accessions, 3,000 rice genome project (3 K-RGP) data, 700 K high-density rice array, Affymetrix 44 K SNP array, QTARO, Reactome, and plastid and GMO information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!