The cytoplasmic 60 kDa progesterone receptor isoform predominates in the human amniochorion and placenta at term.

Reprod Biol Endocrinol

Preterm Birth Research Group, Reproductive Sciences, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, Leicestershire, LE2 7LX, UK.

Published: March 2009

Background: The mechanism that initiates human parturition has been proposed to be 'functional progesterone withdrawal' whereby the 116 kDa B-isoform of the progesterone receptor (PR-B) switches in favour of the 94 kDa A-isoform (PR-A) in reproductive tissues. Recently, other PR isoforms, PR-S, PR-C and PR-M generated from the same gene have been identified and partially characterised.

Methods And Results: Using immunohistochemical, western blotting and RT-PCR techniques, evidence is provided that indicates the major PR isoform present in human term fetal membranes (amnion and chorion) and syncytiotrophoblast of the placenta is neither of the classical nuclear PR-B or PR-A isoforms but is the N-terminally truncated 60 kDa PR-C isoform. Evidence is also provided that this 60 kDa isoform resides in the cytoplasm of the expressing cell types. Data are also presented to show that PR-B, PR-A and PR-S isoforms are essentially absent from the amnion and chorion, whereas PR isoforms A, B, C and S are all present in the decidua, with PR-A being the major isoform. The syncytiotrophoblast of the placenta contains the cytoplasmic 60 kDa isoform, but not isoforms PR-A, PR-B or PR-S.

Conclusion: The major PR isoform in the amnion, chorion and placenta is a 60 kDa protein that could be PR-C, suggesting that the cytoplasmic isoform has a specific role in extra-embryonic tissues and may be involved in the regulation of human parturition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669089PMC
http://dx.doi.org/10.1186/1477-7827-7-22DOI Listing

Publication Analysis

Top Keywords

major isoform
12
amnion chorion
12
cytoplasmic kda
8
progesterone receptor
8
isoform
8
human parturition
8
evidence provided
8
syncytiotrophoblast placenta
8
pr-b pr-a
8
kda isoform
8

Similar Publications

Prion Protein Endoproteolysis: Cleavage Sites, Mechanisms and Connections to Prion Disease.

J Neurochem

January 2025

Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada.

Highly abundant in neurons, the cellular prion protein (PrP) is an obligatory precursor to the disease-associated misfolded isoform denoted PrP that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrP to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrP are referred to as α- and β-cleavages, and in this review we outline the sites within PrP at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology.

View Article and Find Full Text PDF

Metabolic and insulin-resistant diseases, such as type 2 diabetes mellitus (T2DM), have become major health issues worldwide. The prevalence of insulin resistance in the general population ranges from 15.5% to 44.

View Article and Find Full Text PDF

Background/purpose: Peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor of energy metabolism-associated genes, and three PPARγ isoforms have been identified in periodontal tissues and cells. When energy metabolism homeostasis is affected by PPARγ downregulation in periodontal ligament fibroblasts (PDLFs), osteo/cementogenic abilities are markedly lost. Herein, we investigated whether PPARγ agonists promote periodontal tissue regeneration, and which PPARγ isoforms and metabolic pathways are indispensable for osteo/cementogenic abilities.

View Article and Find Full Text PDF

Plasma membrane-associated ARAF condensates fuel RAS-related cancer drug resistance.

Nat Chem Biol

January 2025

Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.

RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!