This study sought to evaluate the long-term bond strength of etch-and-rinse and self-etch adhesive systems to dentin after one year of water storage. Crown fragments from the buccal surface of extracted bovine incisors were ground flat to expose dentin surfaces. Four etch-and-rinse and two self-etch bonding agents were used according to manufacturers' instructions. Bonded specimens were stored in water for either 24 hours or one year at 37 delete C. After elapsed storage times, specimens were tested for shear bond strength (SBS) at 0.5 mm/min. Data were analyzed by ANOVA and Tukey's tests (p < 0.05). Both evaluated factors (adhesive system and storage time) and their interactions were statistically significant. Single Bond produced the highest SBS regardless of the water degradation period. One-year water storage reduced the SBS of Prime & Bond NT and One-Up Bond F significantly; the other adhesives performed similarly. Long-term bond strengths of etch-and-rinse and self-etch adhesive systems are susceptible to hygroscopic and hydrolytic effects to varying extents, depending on their chemistry and structure. The presence of monomers with different properties might induce preferential degradation of specific adhesive polymer systems.

Download full-text PDF

Source

Publication Analysis

Top Keywords

water storage
12
etch-and-rinse self-etch
12
bond strengths
8
long-term bond
8
bond strength
8
self-etch adhesive
8
adhesive systems
8
bond
7
storage
5
long-term water
4

Similar Publications

The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.

View Article and Find Full Text PDF

Combination of Broad Light-Absorption CuS with S,C,N-TiO: Assessment of Photocatalytic Performance in Nitrogen Fixation Reaction.

Inorg Chem

January 2025

Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran.

In the field of solar energy storage, photocatalytic ammonia production is a next-generation technology. The rapid recombination of charges and insignificant utilization of the sunlight spectrum are bottlenecks of effective photocatalytic N fixation. The introduction of impurities in the crystal lattice and the development of heterojunctions could effectively segregate carriers and improve the solar-light-harvesting capability, which can boost NH generation.

View Article and Find Full Text PDF

Choroid plexus-targeted viral gene therapy for alpha-mannosidosis, a prototypical neurometabolic lysosomal storage disease.

Hum Mol Genet

January 2025

Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.

The choroid plexuses (CP) are highly vascularized structures that project into the ventricles of the vertebrate brain. The polarized epithelia of the CP produce cerebrospinal fluid by transporting water and ions into the ventricles from the blood and normally secrete a large number of proteins. We assessed the feasibility of selective CP transduction with recombinant adeno-associated virus (rAAV) gene therapy vectors for treatment of lysosomal storage disease (LSD), a broad category of neurometabolic illness associated with significant burdens to affected patients and their families.

View Article and Find Full Text PDF

Oxygen evolution reaction (OER) is a cornerstone of various electrochemical energy conversion and storage systems, including water splitting, CO/N reduction, reversible fuel cells, and rechargeable metal-air batteries. OER typically proceeds through three primary mechanisms: adsorbate evolution mechanism (AEM), lattice oxygen oxidation mechanism (LOM), and oxide path mechanism (OPM). Unlike AEM and LOM, the OPM proceeds via direct oxygen-oxygen radical coupling that can bypass linear scaling relationships of reaction intermediates in AEM and avoid catalyst structural collapse in LOM, thereby enabling enhanced catalytic activity and stability.

View Article and Find Full Text PDF

Widespread occurrence and relevance of phosphate storage in foraminifera.

Nature

January 2025

SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.

Foraminifera are ubiquitous marine protists that intracellularly accumulate phosphate, an important macronutrient in marine ecosystems and in fertilizer potentially leaked into the ocean. Intracellular phosphate concentrations can be 100-1,000 times higher than in the surrounding water. Here we show that phosphate storage in foraminifera is widespread, from tidal flats to the deep sea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!