Oleanolic acid is a plant-derived triterpenoid, which protects against various hepatotoxicants in rodents. In order to determine whether oleanolic acid activates nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor known to induce various antioxidant and cytoprotective genes, wild-type and Nrf2-null mice were treated with oleanolic acid (90 mg/kg, i.p.) once daily for 3 days. Oleanolic acid increased nuclear accumulation of Nrf2 in wild-type but not Nrf2-null mice, as determined by Western blot and immunofluorescence. Oleanolic acid-treated wild-type mice had increased hepatic mRNA expression of the Nrf2 target genes NAD(P)H:quinone oxidoreductase 1 (Nqo1); glutamate-cysteine ligase, catalytic subunit (Gclc); heme oxygenase-1 (Ho-1); as well as Nrf2 itself. In addition, oleanolic acid increased protein expression and enzyme activity of the prototypical Nrf2 target gene, Nqo1, in wild-type, but not in Nrf2-null mice. Oleanolic acid protected against acetaminophen hepatotoxicity in wild-type mice but to a lesser extent in Nrf2-null mice. Oleanolic acid-mediated Nrf2-independent protection from acetaminophen is, in part, due to induction of Nrf2-independent cytoprotective genes, such as metallothionein. Collectively, the present study demonstrates that oleanolic acid facilitates Nrf2 nuclear accumulation, causing induction of Nrf2-dependent genes, which contributes to protection from acetaminophen hepatotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745914PMC
http://dx.doi.org/10.1016/j.bcp.2008.12.028DOI Listing

Publication Analysis

Top Keywords

oleanolic acid
32
nrf2-null mice
16
acetaminophen hepatotoxicity
12
wild-type nrf2-null
12
oleanolic
10
acid activates
8
cytoprotective genes
8
acid increased
8
nuclear accumulation
8
wild-type mice
8

Similar Publications

Tertiary amine modification enables triterpene nanoparticles to target the mitochondria and treat glioblastoma via pyroptosis induction.

Biomaterials

December 2024

Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA. Electronic address:

Glioblastoma (GBM), the most common primary brain tumor, lacks effective treatments. Emerging evidence suggests mitochondria as a promising therapeutic target, albeit successfully targeting represents a major challenge. Recently, we discovered a group of triterpenes that can self-assemble into nanoparticles (NPs) for cancer treatment.

View Article and Find Full Text PDF

Semisynthesis of Nocarterphenyl A and Its Analogues.

J Nat Prod

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.

-Terphenyl compounds are known to possess a diverse range of biological activities, making the synthesis of novel -terphenyl derivatives a significant research objective. In this study, we report the first synthesis of nocarterphenyl A (), characterized by a thiazole-fused -terphenyl framework. Furthermore, we synthesized 18 additional analogs, including the naturally occurring compound 5-methoxy-4,7-bis(4-methoxyphenyl)benzo[]thiazol-6-ol (), employing a similar synthetic approach.

View Article and Find Full Text PDF

Unveiling Metabolic Crosstalk: -Mediated Defense Priming in Pine Needles Against Pathogen Infection.

Metabolites

November 2024

Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China.

Plant growth-promoting rhizobacteria (PGPR), particularly spp., are pivotal in enhancing plant defense mechanisms against pathogens. This study aims to investigate the metabolic reprogramming of pine needles induced by csuftcsp75 in response to the pathogen P9, evaluating its potential as a sustainable biocontrol agent.

View Article and Find Full Text PDF

Active herbal ingredients and drug delivery design for tumor therapy: a review.

Chin J Nat Med

December 2024

National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic address:

Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!