Objectives: Alterations in the enzymes involved in homocysteine (Hcy) metabolism or vitamin deficiency could play a role in coronary artery disease (CAD) development. This study investigated the influence of MTHFR and MTR gene polymorphisms, plasma folate and MMA on Hcy concentrations and CAD development. MMA and folate concentrations were also investigated according to the polymorphisms.
Methods: Two hundred and eighty-three unrelated Caucasian individuals undergoing coronary angiography (175 with CAD and 108 non-CAD) were assessed in a case-control study. Plasma Hcy and MMA were measured by liquid chromatography/tandem mass spectrometry. Plasma folate was measured by competitive immunoassay. Dietary intake was evaluated using a nutritional questionnaire. Polymorphisms MTHFR and MTR were investigated by polymerase chain reaction (PCR) followed by enzyme digestion or allele-specific PCR.
Results: Hcy mean concentrations were higher in CAD patients compared to controls, but below statistical significance (P = 0.246). Increased MMA mean concentrations were frequently observed in the CAD group (P = 0.048). Individuals with MMA concentrations >0.5 micromol/l (vitamin B(12) deficiency) were found only in the CAD group (P = 0.004). A positive correlation between MMA and Hcy mean concentrations was observed in both groups, CAD (P = 0.001) and non-CAD (P = 0.020). MMA mean concentrations were significantly higher in patients with hyperhomocysteinemia in both groups, CAD and non-CAD (P = 0.0063 and P = 0.013, respectively). Folate mean concentration was significantly lower in carriers of the wild-type MTHFR 1298AA genotype (P = 0.010).
Conclusion: Our results suggest a correlation between the MTHFR A1298C polymorphism and plasma folate concentration. Vitamin B(12) deficiency, reflected by increased MMA concentration, is an important risk factor for the development both of hyperhomocysteinemia and CAD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11239-009-0321-7 | DOI Listing |
Ann Clin Biochem
January 2025
Clinical Haematology, New Cross Hospital, Black Country Pathology Services, The Royal Wolverhampton NHS Trust, Wolverhampton, UK.
We describe the utility of 'folic and folinic acid load tests' in the investigation of a 26-year-old woman with persistently low serum folate and moderate hyperhomocysteinaemia unresponsive to folic acid supplements. Serum folate, plasma 5-methyltetrahydrofolate (5-MTHF), red cell 5-MTHF and plasma total homocysteine at baseline, 2-h, 4-h and 2- or 4-days (if applicable) post administration of a large dose of oral folic acid, or oral or parenteral folinic acid were measured. The tests confirmed non-compliance but also suggested an unsuspected possible defect in the folate pathway based on differential response to folic versus folinic acid supplements.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Mechanisms driving cerebrovascular decline during Alzheimer's disease and related dementias (ADRD) are poorly understood. Methylenetetrahydrofolate reductase (MTHFR) is an enzyme in the folate/methionine pathway. Variants in MTHFR, notably 677C>T, are associated with ADRD.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
ALDH1L1 plays a crucial role in folate metabolism, regulating the flow of one-carbon groups through the conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO in a NADP-dependent reaction. The downregulation of ALDH1L1 promotes malignant tumor growth, and silencing of ALDH1L1 is commonly observed in many cancers. In a previous study, knockout (KO) mice were found to have an altered liver metabotype, including significant alterations in glycine and serine.
View Article and Find Full Text PDFEnviron Health (Wash)
December 2024
Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069 Beijing, China.
Exposure to metals may potentially impact cognitive health in the elderly; however, the evidence remains ambiguous. The specific role of serum folate in this relationship is also unclear. We aimed to evaluate the individual and joint impact of metals on cognition in the elderly from the United States and explore the potential mediating effect of serum folate.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
North Dakota State University, Fargo, ND, USA.
Recent evidence suggests that environmental factors experienced by sires can be transmitted through the ejaculate (seminal plasma + sperm) into the female reproductive tract, influencing fertilization, embryo development, and postnatal offspring outcomes. This concept is termed paternal programming. In rodents, sire nutrition was shown to directly alter offspring outcomes through sperm epigenetic signatures, DNA damage/oxidative stress, cytokine profiles, and/or the seminal microbiome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!