Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper entails a comprehensive study on production of a biosurfactant from Rhodococcus erythropolis MTCC 2794. Two optimization techniques--(1) artificial neural network (ANN) coupled with genetic algorithm (GA) and (2) response surface methodology (RSM)--were used for media optimization in order to enhance the biosurfactant yield by Rhodococcus erythropolis MTCC 2794. ANN and RSM models were developed, incorporating the quantity of four medium components (sucrose, yeast extract, meat peptone, and toluene) as independent input variables and biosurfactant yield [calculated in terms of percent emulsification index (% EI(24))] as output variable. ANN-GA and RSM were compared for their predictive and generalization ability using a separate data set of 16 experiments, for which the average quadratic errors were approximately 3 and approximately 6%, respectively. ANN-GA was found to be more accurate and consistent in predicting optimized conditions and maximum yield than RSM. For the ANN-GA model, the values of correlation coefficient and average quadratic error were approximately 0.99 and approximately 3%, respectively. It was also shown that ANN-based models could be used accurately for sensitivity analysis. ANN-GA-optimized media gave about a 3.5-fold enhancement in biosurfactant yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10295-009-0547-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!