Superoxide dismutase (SOD) is an enzyme that catalytically removes the superoxide radical (*O2-) and protects organisms from oxidative damage during normal aging. We demonstrate that not only the cytosolic *O2- level but also the mitochondrial *O2- level increases in the deletion mutants of sod-1 gene encoding Cu/Zn SOD in Caenorhabditis elegans (C. elegans). Interestingly, this suggests that the activity of SOD-1, which so far has been thought to act mainly in cytoplasm, helps to control the detoxification of *O2- also in the mitochondria. We also found functional compensation by other SODs, especially the sod-5 gene, which was induced several fold in the mutants. Therefore, the possibility exists that the compensative expression of sod-5 gene in the sod-1 deficit is associated with the insulin/insulin-like growth factor-1 (Ins/IGF-1) signaling pathway, which regulates longevity and stress resistance of C. elegans because the sod-5 gene may be a target of the pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glp020DOI Listing

Publication Analysis

Top Keywords

sod-5 gene
12
caenorhabditis elegans
8
*o2- level
8
sod-1
4
sod-1 deletions
4
deletions caenorhabditis
4
elegans
4
elegans alter
4
alter localization
4
localization intracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!