The development of blended biomacromolecule and polyester scaffolds can potentially be used in many tissue engineering applications. This study was to develop a poly(gamma-glutamic acid)-graft-chondroitin sulfate-blend-poly(epsilon-caprolactone) (gamma-PGA-g-CS/PCL) composite biomaterial as a scaffold for cartilage tissue engineering. Chondroitin sulfate (CS) was grafted to gamma-PGA, forming a gamma-PGA-g-CS copolymer with 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide (EDC) system. The gamma-PGA-g-CS copolymers were then blended with PCL to yield a porous gamma-PGA-g-CS/PCL scaffold by salt leaching. These blended scaffolds were characterized by (1)H NMR, ESCA, water-binding capacity, mechanical test, degradation rate and CS assay. The results showed that with gamma-PGA-g-CS as a component, the water-binding capacity and the degradation rate of the scaffolds would substantially increase. During a 4 week period of culture, the mechanical stability of gamma-PGA-g-CS/PCL scaffolds was raised gradually and chondrocytes were induced to function normally in vitro. Furthermore, a larger amount of secreted GAGs was present in the gamma-PGA-g-CS/PCL matrices than in the control (PCL), as revealed by Alcian blue staining of the histochemical sections. Thus, gamma-PGA-g-CS/PCL matrices exhibit excellent biodegradation and biocompatibility for chondrocytes and have potential in tissue engineering as temporary substitutes for articular cartilage regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2009.02.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!