Synthesis of protein tyrosine phosphatase 1B inhibitors: model validation and docking studies.

Bioorg Med Chem Lett

Central Drug Research Institute, Medicinal and Process Chemistry, Chattar Manzil Palace, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India.

Published: April 2009

AI Article Synopsis

Article Abstract

The designed and synthesized 2-(4-methoxyphenyl) ethyl] acetamide derivatives (3a, 3b and 3c) were evaluated for their PTP1B inhibitory activity where they showed IC(50) values 69 microM, 87 microM and 71 microM, respectively. These results correlated well with the docking studies and in vivo screening of the compounds for their antidiabetic activity in SLM and STZ models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.02.058DOI Listing

Publication Analysis

Top Keywords

docking studies
8
microm microm
8
synthesis protein
4
protein tyrosine
4
tyrosine phosphatase
4
phosphatase inhibitors
4
inhibitors model
4
model validation
4
validation docking
4
studies designed
4

Similar Publications

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Metabolic changes that allow artemisinin-resistant parasites to tolerate oxidative stress.

Front Parasitol

September 2024

Centro de Cálculo Científico de la Universidad de Los Andes (CeCalCULA), Universidad de Los Andes (ULA), Mérida, Venezuela.

Artemisinin-based treatments (ACTs) are the first therapy currently used to treat malaria produced by . However, in recent years, increasing evidence shows that some strains of are less susceptible to ACT in the Southeast Asian region. A data reanalysis of several omics approaches currently available about parasites of that have some degree of resistance to ACT was carried out.

View Article and Find Full Text PDF

EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of .

Front Parasitol

March 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.

The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.

View Article and Find Full Text PDF

The study by Yang presents a comprehensive investigation into the therapeutic potential of curcumin for gastric cancer (GC). Using network pharmacology, the researchers identified 48 curcumin-related genes, 31 of which overlap with GC targets. Key genes, including , , , , , and , are linked to poor survival in GC patients.

View Article and Find Full Text PDF

Reliable in silico prediction of fragment binding modes remains a challenge in current drug design research. Due to their small size and generally low binding affinity, fragments can potentially interact with their target proteins in different ways. In the current study, we propose a workflow aimed at predicting favorable fragment binding sites and binding poses through multiple short molecular dynamics simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!