Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Agaricus bisporus mushrooms contain an abundance of ergosterol, which on exposure to UV irradiation is converted to vitamin D2. The present study evaluated the effects UV-C irradiation on vitamin D2 formation and its bioavailability in rats. Fresh button mushrooms were exposed to UV-C irradiation at mean intensities of 0.403, 0.316, and 0.256 mW/cm(2) from respective distances of 30, 40, and 50 cm for periods ranging from 2.5 to 60 min. Vitamin D2 and ergosterol were measured by HPLC-MS/MS. The stability and retention of vitamin D2 were assessed including the extent of discoloration during storage at 4 degrees C or at room temperature. Exposure to UV-C irradiation at 0.403 mW/cm(2) intensity from 30 cm distance resulted in a time-dependent increase in vitamin D2 concentrations that was significantly higher than those produced at intensities of 0.316 and 0.256 mW/cm(2) from distances of 40 and 50 cm, respectively. Furthermore, the concentrations of vitamin D2 produced after exposure to UV-C irradiation doses of 0.125 and 0.25 J/cm(2) for, 2.5, 5, and 10 min were 6.6, 15.6, and 23.1 microg/g solids, equivalent to 40.6, 95.4, and 141 microg/serving, respectively. The data showed a high rate of conversion from ergosterol to vitamin D2 at short treatment time, which is required by the mushroom industry. The stability of vitamin D2 remained unchanged during storage at 4 degrees C and at room temperature over 8 days (P = 0.36), indicating no degradation of vitamin D2. By visual assessment or using a chromometer, no significant discoloration of irradiated mushrooms, as measured by the degree of "whiteness", was observed when stored at 4 degrees C compared to that observed with mushrooms stored at room temperature over an 8 day period (P < 0.007). Vitamin D2 was well absorbed and metabolized as evidenced by the serum response of 25-hydroxyvitamin D in rats fed the irradiated mushrooms. Taken together, the data suggest that commercial production of button mushrooms enriched with vitamin D2 for improving consumer health may be practical.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf803908q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!