A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alignment-free prediction of a drug-target complex network based on parameters of drug connectivity and protein sequence of receptors. | LitMetric

There are many drugs described with very different affinity to a large number of receptors. In this work, we selected drug-receptor pairs (DRPs) of affinity/nonaffinity drugs to similar/dissimilar receptors and we represented them as a large network, which may be used to identify drugs that can act on a receptor. Computational chemistry prediction of the biological activity based on quantitative structure-activity relationships (QSAR) substantially increases the potentialities of this kind of networks avoiding time- and resource-consuming experiments. Unfortunately, most QSAR models are unspecific or predict activity against only one receptor. To solve this problem, we developed here a multitarget QSAR (mt-QSAR) classification model. Overall model classification accuracy was 72.25% (1390/1924 compounds) in training, 72.28% (459/635) in cross-validation. Outputs of this mt-QSAR model were used as inputs to construct a network. The observed network has 1735 nodes (DRPs), 1754 edges or pairs of DRPs with similar drug-target affinity (sPDRPs), and low coverage density d = 0.12%. The predicted network has 1735 DRPs, 1857 sPDRPs, and also low coverage density d = 0.12%. After an edge-to-edge comparison (chi-square = 9420.3; p < 0.005), we have demonstrated that the predicted network is significantly similar to the one observed and both have a distribution closer to exponential than to normal.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp800102cDOI Listing

Publication Analysis

Top Keywords

pairs drps
8
network observed
8
network 1735
8
spdrps low
8
low coverage
8
coverage density
8
density 012%
8
predicted network
8
network
6
alignment-free prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!