Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There are many drugs described with very different affinity to a large number of receptors. In this work, we selected drug-receptor pairs (DRPs) of affinity/nonaffinity drugs to similar/dissimilar receptors and we represented them as a large network, which may be used to identify drugs that can act on a receptor. Computational chemistry prediction of the biological activity based on quantitative structure-activity relationships (QSAR) substantially increases the potentialities of this kind of networks avoiding time- and resource-consuming experiments. Unfortunately, most QSAR models are unspecific or predict activity against only one receptor. To solve this problem, we developed here a multitarget QSAR (mt-QSAR) classification model. Overall model classification accuracy was 72.25% (1390/1924 compounds) in training, 72.28% (459/635) in cross-validation. Outputs of this mt-QSAR model were used as inputs to construct a network. The observed network has 1735 nodes (DRPs), 1754 edges or pairs of DRPs with similar drug-target affinity (sPDRPs), and low coverage density d = 0.12%. The predicted network has 1735 DRPs, 1857 sPDRPs, and also low coverage density d = 0.12%. After an edge-to-edge comparison (chi-square = 9420.3; p < 0.005), we have demonstrated that the predicted network is significantly similar to the one observed and both have a distribution closer to exponential than to normal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/mp800102c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!