The role of apoptosis in radiation oncology.

Int J Radiat Biol

Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.

Published: February 2009

Purpose: Apoptosis, as a mode of cell death in irradiated cell populations, has been the subject of literarily hundreds if not thousands of published reports over the past few years. However, in spite of the large body of knowledge related to this subject, the role of apoptosis in determining tumor response to radiotherapy has been and remains poorly understood and controversial. Indeed, some previous reviews have suggested that apoptosis may not be important in this context. The purpose of the present review is to provide some examples of recently reported laboratory investigations that indicate that there is a reasonable expectation that the radiation-induced apoptosis observed has contributed to the tumor response.

Conclusions: We review reports in four areas of research: Molecularly targeted agents, in vivo imaging, Bcl-2 and cancer stem cells. Examples are provided in each of these areas that we believe justify a reassessment of the role that apoptosis plays in radiation oncology.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553000802662595DOI Listing

Publication Analysis

Top Keywords

role apoptosis
12
radiation oncology
8
apoptosis
5
apoptosis radiation
4
oncology purpose
4
purpose apoptosis
4
apoptosis mode
4
mode cell
4
cell death
4
death irradiated
4

Similar Publications

Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

View Article and Find Full Text PDF

Experimental Research Progress of mPGES-1 Inhibitor 2,5-Dimethylcelecoxib in Various Diseases.

Curr Med Chem

January 2025

Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.

Prostaglandin E2 (PGE2) plays a crucial role in inflammation. Non-steroidal anti-inflammatory medications are commonly utilized to alleviate pain and address inflammation by blocking the production of PGE2 and cyclooxygenase (COX). However, selective inhibition of COX can easily lead to a series of risks for cardiovascular diseases.

View Article and Find Full Text PDF

Targeting KAT7 inhibits the progression of colorectal cancer.

Theranostics

January 2025

Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.

Colorectal cancer (CRC) is a leading cause of cancer-related mortality. Epigenetic modifications play a significant role in the progression of CRC. KAT7, a histone acetyltransferase, has an unclear role in CRC.

View Article and Find Full Text PDF

Cardiomyocyte S1PR1 promotes cardiac regeneration via AKT/mTORC1 signaling pathway.

Theranostics

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.

Lower vertebrates and some neonatal mammals are known to possess the ability to regenerate cardiomyocyte and fully recover after heart injuries within a limited period. Understanding the molecular mechanisms of heart regeneration and exploring new ways to enhance cardiac regeneration hold significant promise for therapeutic intervention of heart failure. Sphingosine 1-phospahte receptor 1 (S1PR1) is highly expressed in cardiomyocytes and plays a crucial role in heart development and pathological cardiac remodeling.

View Article and Find Full Text PDF

Background: Many cancer cells exhibit aberrant metabolic reprogramming through abnormal mitochondrial respiration. Protein tyrosine phosphatase mitochondrial 1 (PTPMT1) is a protein tyrosine phosphatase localized to the mitochondria and linked to mitochondrial respiration. However, the expression and role of PTPMT1 in regulating the biological characteristics of small cell lung cancer (SCLC) has not yet been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!