We study the exclusion of salt from charged porous media (Donnan effect), by using a coarse-grained approach. The porous medium is a lamellar system, namely a Montmorillonite clay, in contact with a reservoir, which contains an electrolyte solution. We develop a specific coarse-graining strategy to investigate the structural properties of this system. Molecular simulations are used to calibrate a mesoscopic model of the clay micropore in equilibrium with a reservoir. Brownian Dynamics simulations are then used to predict the structure of ions in the pore and the amount of NaCl salt entering the pore as a function of the pore size (the distance L between clay surfaces) and of the electrolyte concentration in the reservoir. These results are also compared to the predictions of a Density Functional Theory, which takes into account the excluded volumes of ions. We show that the calibration of the mesoscopic model is a key point and has a strong influence on the result. We observe that the salt exclusion increases when kappaL decreases (where kappa is the inverse of the Debye length) and that this effect is modulated by the correlations between ions. Two different regimes are revealed. At low concentrations in the reservoir, we observe a regime controlled by electrostatics: the Coulomb attraction between ions increases the amount of salt in the interlayer space. On the opposite, at high concentrations in the reservoir, the excluded volume effect dominates.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b818055eDOI Listing

Publication Analysis

Top Keywords

salt exclusion
8
charged porous
8
porous media
8
coarse-graining strategy
8
mesoscopic model
8
concentrations reservoir
8
salt
5
reservoir
5
exclusion charged
4
media coarse-graining
4

Similar Publications

Ultramicroporous Tröger's Base Framework Membranes With Ionized Sub-nanochannels for Efficient Acid/Alkali Recovery.

Adv Sci (Weinh)

January 2025

Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe, 6500034, Japan.

Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process.

View Article and Find Full Text PDF

Objective: Extracorporeal membrane oxygenation (ECMO) is a high-risk procedure with significant morbidity and mortality and there is an uncertain volume-outcome relationship, especially regarding long-term functional outcomes. The aim of this study was to examine the association between ECMO centre volume and long-term death and disability outcomes.

Design Setting And Participants: This is a registry-embedded observational cohort study.

View Article and Find Full Text PDF

Multi-layered Apoplastic Barrier Underlying the Ability Of Na+ Exclusion In Vigna Marina.

Plant Cell Physiol

January 2025

Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.

Soil salinization and ground water depletion are increasingly constraining crop production. Identifying useful mechanisms of salt tolerance is an important step towards development of salt-tolerant crops. Of particular interest are mechanisms that are present in wild crop relatives, as they may have greater stress tolerance than crop species.

View Article and Find Full Text PDF

Introduction: Sodium nitrite is a potent oxidizer, which may precipitate rapidly lethal methemoglobinemia. Prompt diagnosis and treatment may salvage otherwise fatal cases. It is unclear if emergency departments are prepared for increasing cases.

View Article and Find Full Text PDF

Objective: The aim of this systematic review is to explore the effectiveness of different methods of reducing contamination and biofilms in dental unit waterlines (DUWLs) and to provide reference for future standardisation of disinfection practices in dental clinic.

Methods: This systematic review searched PubMed and Web of Science databases for DUWL disinfection studies from 2013 to 2023, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and Synthesis Without Meta-analysis, additional extracting relevant data based on predefined inclusion and exclusion criteria.

Results: The study review identified 8442 articles, with 58 included after rigorous screening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!