Climate change impacts on soil microbial communities could alter the structure of terrestrial ecosystems and biogeochemical cycles of the Earth. We used 16S rRNA gene microarrays to evaluate changes in the composition of grassland soil microbial communities under rainfall amendments simulating alternative climate change scenarios, and to compare these to responses of overlying plants and invertebrates. Following 5 years of rainfall manipulation, soil bacteria and archaea in plots where natural rain was supplemented differed little from ambient controls, despite profound treatment-related changes in the overlying grassland. During the sixth and seventh year, seasonal differences in bacterial and archaeal assemblages emerged among treatments, but only when watering exacerbated or alleviated periods of particularly aberrant conditions in the ambient climate. In contrast to effects on plants and invertebrates, effects on bacteria and archaea did not compound across seasons or years, indicating that soil microbial communities may be more robust than associated aboveground macroorganisms to certain alterations in climate.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ismej.2009.16DOI Listing

Publication Analysis

Top Keywords

soil microbial
16
microbial communities
12
overlying grassland
8
climate change
8
plants invertebrates
8
bacteria archaea
8
soil
5
despite strong
4
strong seasonal
4
seasonal responses
4

Similar Publications

Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru.

View Article and Find Full Text PDF

Rice (Oryza sativa L.), Poaceae family, forms staple diet of half of world's population, and brinjal (Solanum melongena L.), an important solanaceous crop, are consumed worldwide.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs), recognized for their unique properties, are widely applied in fields such as agriculture, biotechnology, food security, and medicine. However, concerns persist regarding their interactions with living organisms and potential environmental impacts. This study investigates the effects of AgNPs on key soil microbial indicators that are essential for ecological functioning.

View Article and Find Full Text PDF

Background: The rise of antibiotic-resistant pathogens has intensified the search for novel antimicrobial agents. This study aimed to isolate from local soil samples and evaluate its antimicrobial properties, along with optimizing the production of bioactive compounds.

Methods: Soil samples were collected from local regions, processed, and analysed for Streptomyces strains isolation using morphological characteristics and molecular identification through 16S rRNA gene PCR assay.

View Article and Find Full Text PDF

Plant-microbe interactions play pivotal roles in sustaining crop productivity and soil fertility, offering promising avenues for sustainable agricultural practices. This review paper explores the multifaceted interactions between plants and various microorganisms, highlighting their significance in enhancing crop productivity, combating pathogens, and promoting soil health. Understanding these interactions is crucial for harnessing their potential in agricultural systems to address challenges such as food security and environmental sustainability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!