A low-contrast spot that activates just one ganglion cell in the retina is detected in the spike train of the cell with about the same sensitivity as it is detected behaviorally. This is consistent with Barlow's proposal that the ganglion cell and later stages of spiking neurons transfer information essentially without loss. Yet, when losses of sensitivity by all preneural factors are accounted for, predicted sensitivity near threshold is considerably greater than behavioral sensitivity, implying that somewhere in the brain information is lost. We hypothesized that the losses occur mainly in the retina, where graded signals are processed by analog circuits that transfer information at high rates and low metabolic cost. To test this, we constructed a model that included all preneural losses for an in vitro mammalian retina, and evaluated the model to predict sensitivity at the cone output. Recording graded responses postsynaptic to the cones (from the type A horizontal cell) and comparing to predicted preneural sensitivity, we found substantial loss of sensitivity (4.2-fold) across the first visual synapse. Recording spike responses from brisk-transient ganglion cells stimulated with the same spot, we found a similar loss (3.5-fold) across the second synapse. The total retinal loss approximated the known overall loss, supporting the hypothesis that from stimulus to perception, most loss near threshold is retinal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818728 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5071-08.2009 | DOI Listing |
Niger Med J
January 2025
Department Of Medical Oncology, Indira Gandhi Institute of Medical Sciences, Patna, India.
Background: Bone marrow (BM) in addition to being the origin of primary hematological malignancies is also commonly involved in metastatic solid tumors. Bone marrow examination includes aspiration and biopsy, and it is a well-known procedure not only to diagnose hematological malignancies but also for staging and prognosis of various solid tumors. The presence of metastasis in the bone marrow is of grave prognostic significance and it is imperative to rule out marrow involvement in any malignancy where curative treatment is considered.
View Article and Find Full Text PDFSurg Open Sci
January 2025
Department of Breast and Thyroid Surgery, Kitasato University Hospital/Kitasato University School of Medicine, Kanagawa, Japan.
Background: The advantage of intraoperative neuromonitoring (IONM) has been widely accepted in thyroid/parathyroid surgery. However, there are discrepancies of amplitudes on recurrent laryngeal nerve (RLN) palsy and vocal cord paralysis (VCP) because of amplitude variations among individuals. Accordingly, the universal usefulness of quantitative amplitude value among patients were assessed.
View Article and Find Full Text PDFMedical imaging systems are commonly assessed and optimized by the use of objective measures of image quality (IQ). The performance of the ideal observer (IO) acting on imaging measurements has long been advocated as a figure-of-merit to guide the optimization of imaging systems. For computed imaging systems, the performance of the IO acting on imaging measurements also sets an upper bound on task-performance that no image reconstruction method can transcend.
View Article and Find Full Text PDFAdvancements in plasmonic sensing require simultaneous detection capability that ensures large-scale detection with reduced losses. In this work, we propose a new solid-core fiber-based refractive index (RI) sensor with an ultra-broad detection range. The proposed fiber consists of a relatively simple single-ring cladding with six circular tubes in which the light is guided in the core based on the inhibited-coupling (IC) mechanism.
View Article and Find Full Text PDFHollow-core optical fiber (HCF) gas cells are an attractive option for many applications including metrology and non-linear optics due to the enhanced gas-light interaction length in a compact and lightweight format. Here, we report the first demonstration and characterization of a selectively pressurized, hermetically sealed hollow-core fiber-based gas cell, where the core is filled with a higher gas pressure than the cladding to enhance the optical performance. This differential gas pressure creates a gas-induced differential refractive index (GDRI) that is shown to enable significant modification of the HCF's optical performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!