Cells have intrinsic defenses against virus infection, acting before the innate or the adaptive immune response. Preexisting antiviral proteins such as PML, Daxx, and Sp100 are stored in specific nuclear domains (ND10). In herpes simplex virus type 1 (HSV-1), the immediate-early protein ICP0 serves as a counterdefense through degradation of the detrimental protein PML. We asked whether interferon (IFN)-upregulated Sp100 is similarly antagonized by ICP0 in normal human fibroblasts by using a selective-knockdown approach. We find that of the four Sp100 isoforms, the three containing a SAND domain block the transcription of HSV-1 proteins ICP0 and ICP4 at the promoter level and that IFN changes the differential splicing of the Sp100 transcript in favor of the inhibitor Sp100C. At the protein level, ICP0 activity does not lead to the hydrolysis of any of the Sp100 isoforms. The SAND domain-containing isoforms are not general inhibitors of viral promoters, as the activity of the major immediate-early cytomegalovirus promoter is not diminished, whereas the long terminal repeat of a retrovirus, like the ICP0 promoter, is strongly inhibited. Since we could not find a specific promoter region in the ICP0 gene that responds to the SAND domain-containing isoforms, we questioned whether Sp100 could act through other antiviral proteins such as PML. We find that all four Sp100 isoforms stabilize ND10 and protect PML from ICP0-based hydrolysis. Loss of either all PML isoforms or all Sp100 isoforms reduces the opposite constituent ND10 protein, suggesting that various interdependent mechanisms of ND10-based proteins inhibit virus infection at the immediate-early level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682089PMC
http://dx.doi.org/10.1128/JVI.02083-08DOI Listing

Publication Analysis

Top Keywords

sp100 isoforms
20
sp100
9
isoforms
8
herpes simplex
8
simplex virus
8
virus type
8
virus infection
8
antiviral proteins
8
proteins pml
8
find sp100
8

Similar Publications

The interactions between PML nuclear bodies and small and medium size DNA viruses.

Virol J

May 2023

Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic.

Promyelocytic leukemia nuclear bodies (PM NBs), often referred to as membraneless organelles, are dynamic macromolecular protein complexes composed of a PML protein core and other transient or permanent components. PML NBs have been shown to play a role in a wide variety of cellular processes. This review describes in detail the diverse and complex interactions between small and medium size DNA viruses and PML NBs that have been described to date.

View Article and Find Full Text PDF

Sp100 (speckled protein 100 kDa) is a constituent component of nuclear structure PML (promyelocytic leukemia) bodies, playing important roles in mediating intrinsic and innate immunity. The Sp100 gene encodes four isoforms with distinct roles in the transcriptional regulation of both cellular and viral genes. Since Sp100 is a primary intranuclear target of infected-cell protein 0 (ICP0), an immediate early E3 ligase encoded by herpes simplex virus 1 (HSV-1), previous investigations attempting to analyze the functions of individual Sp100 variants during HSV-1 infection mostly avoided using a wild-type virus.

View Article and Find Full Text PDF

Molecular Cloning of Alternative Splicing Variants of the Porcine Gene and Its Expression Patterns During Japanese Encephalitis Virus Infection.

Front Vet Sci

November 2021

Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.

Promyelocytic leukemia (PML) protein is a crucial component of PML-nuclear bodies (PML-NBs). PML and PML-NBs are involved in the regulation of various cellular functions, including the antiviral immune response. The human gene can generate several different isoforms through alternative splicing.

View Article and Find Full Text PDF

Speckled 100 kDa (Sp100) plays an important role in the antiviral immune response, however, little is known about porcine Sp100. In this study, porcine Sp100 was cloned and its response to interferon (IFN) α was identified. We obtained the cDNA (V1) of the gene, SP100, and seven alternative splicing variants (V2-8).

View Article and Find Full Text PDF

The constitutive expression of Speckled-100 (Sp100) is known to restrict the replication of many clinically important DNA viruses. This pre-existing (intrinsic) immune defense to virus infection can be further upregulated upon interferon (IFN) stimulation as a component of the innate immune response. In humans, Sp100 is encoded by a single gene locus, which can produce alternatively spliced isoforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!