In this paper, we present a new Bayesian model for the blind image deconvolution (BID) problem. The main novelty of this model is the use of a sparse kernel-based model for the point spread function (PSF) that allows estimation of both PSF shape and support. In the herein proposed approach, a robust model of the BID errors and an image prior that preserves edges of the reconstructed image are also used. Sparseness, robustness, and preservation of edges are achieved by using priors that are based on the Student's-t probability density function (PDF). This pdf, in addition to having heavy tails, is closely related to the Gaussian and, thus, yields tractable inference algorithms. The approximate variational inference methodology is used to solve the corresponding Bayesian model. Numerical experiments are presented that compare this BID methodology to previous ones using both simulated and real data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2008.2011757 | DOI Listing |
J Acoust Soc Am
January 2025
School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
A complex-valued neural process method, combined with modal depth functions (MDFs) of the ocean waveguide, is proposed to reconstruct the acoustic field. Neural networks are used to describe complex Gaussian processes, modeling the distribution of the acoustic field at different depths. The network parameters are optimized through a meta-learning strategy, preventing overfitting under small sample conditions (sample size equals the number of array elements) and mitigating the slow reconstruction speed of Gaussian processes (GPs), while denoising and interpolating sparsely distributed acoustic field data, generating dense field data for virtual receiver arrays.
View Article and Find Full Text PDFGenome Res
September 2024
Department of Computer Science and Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong SAR 999077, China;
Chromatin loop identification plays an important role in molecular biology and 3D genomics research, as it constitutes a fundamental process in transcription and gene regulation. Such precise chromatin structures can be identified across genome-wide interaction matrices via Hi-C data analysis, which is essential for unraveling the intricacies of transcriptional regulation. Given the increasing number of genome-wide contact maps, derived from both in situ Hi-C and single-cell Hi-C experiments, there is a pressing need for efficient and resilient algorithms capable of processing data from diverse experiments rapidly and adaptively.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2024
Department of Energy Science, Sungkyunkwan University, Seobu-ro 2066, Suwon 16419, Korea.
Recent advancements in machine learning potentials (MLPs) have significantly impacted the fields of chemistry, physics, and biology by enabling large-scale first-principles simulations. Among different machine learning approaches, kernel-based MLPs distinguish themselves through their ability to handle small datasets, quantify uncertainties, and minimize over-fitting. Nevertheless, their extensive computational requirements present considerable challenges.
View Article and Find Full Text PDFBioinformatics
March 2024
Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
Motivation: Topologically associating domains (TADs) are fundamental building blocks of 3D genome. TAD-like domains in single cells are regarded as the underlying genesis of TADs discovered in bulk cells. Understanding the organization of TAD-like domains helps to get deeper insights into their regulatory functions.
View Article and Find Full Text PDFBiometrics
January 2024
Department of Mathematical Science, University of Cincinnati, Cincinnati, OH 45221, United States.
We propose a kernel-based estimator to predict the mean response trajectory for sparse and irregularly measured longitudinal data. The kernel estimator is constructed by imposing weights based on the subject-wise similarity on L2 metric space between predictor trajectories, where we assume that an analogous fashion in predictor trajectories over time would result in a similar trend in the response trajectory among subjects. In order to deal with the curse of dimensionality caused by the multiple predictors, we propose an appealing multiplicative model with multivariate Gaussian kernels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!