A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of BNP7787 thiol-disulfide exchange reactions in phosphate buffer and human plasma using microscale electrochemical high performance liquid chromatography. | LitMetric

AI Article Synopsis

  • BNP7787 is a new investigational drug aimed at preventing kidney damage caused by cisplatin, utilizing thiol-disulfide exchange reactions for protection.
  • A sensitive micro-HPLC-EC method has been developed to detect and quantify BNP7787 and its related compounds in plasma, overcoming limitations of previous analytical techniques.
  • This new method simplifies sample preparation and involves direct detection of thiols and disulfides without needing derivatizing agents, marking a significant improvement in analysis capabilities.

Article Abstract

BNP7787 (disodium 2,2'-dithio-bis ethane sulfonate; Tavocept) is a novel water-soluble investigational agent that is undergoing clinical development for prevention and mitigation of cisplatin-induced nephrotoxicity. BNP7787 is a disulfide that undergoes thiol-disulfide exchange reactions in vivo with physiological thiols. Mesna-disulfide heteroconjugates that form as a result of these exchange reactions may play a key role in the protection against cisplatin-induced nephrotoxicity. Although several analytical methods have been used to detect thiols and disulfides, they have notable limitations including (i) low sensitivity, (ii) interference by chemical modification by derivatization reagents, and (iii) cumbersome sample preparation. In this paper, a sensitive micro-HPLC-EC method is described that identifies BNP7787 and mesna in plasma and phosphate buffer across a broad concentration range from 500nM to 100microM. This method utilizes a dual electrochemical detector equipped with a wall-jet gold electrode. The approach described here facilitates the identification of BNP7787 and mesna down to nanomolar levels. Although we did not focus on optimizing the approach for other thiol and disulfide compounds, we believe this approach could be optimized and used in the identification of other thiols and disulfides in plasma. The assay requires significantly less sample preparation and does not involve the use of derivatizing agents (i.e., the thiol and disulfide species can be detected directly) and represents an important advance over previous methods. This method was used to detect and quantitate BNP7787 and to monitor and kinetically characterize the interactions of BNP7787 with glutathione, cysteine, cysteinyl-glycine, cysteinyl-glutamate and homocysteine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2009.02.056DOI Listing

Publication Analysis

Top Keywords

exchange reactions
12
thiol-disulfide exchange
8
phosphate buffer
8
cisplatin-induced nephrotoxicity
8
thiols disulfides
8
sample preparation
8
bnp7787 mesna
8
thiol disulfide
8
bnp7787
6
analysis bnp7787
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!