Post explosion residues (PER) are residues from pyrotechnic compositions or explosives that are generated during an explosion. In the recent past SEM/EDX was used several times to analyze PER from pyrotechnic compositions. The results from these studies suggest that there might be a difference in morphology and composition of pyrotechnic residues formed at different levels of confinement. Also because of general thermodynamic principles it is believed that at higher levels of confinement the final pressure and temperature during the explosion is probably (but not necessarily) higher, eventually resulting in smaller and more spherical particles and a more homogeneous elemental composition. If there is a relation between morphology and composition of pyrotechnic residues and the level of confinement at which these are formed, it would be possible to draw conclusions about the conditions at which pyrotechnic residues were formed and the kind and construction of the device used. This may aid forensic scientists not only in the determination of the original explosive composition, but also of the explosive device. To perform controlled experiments with pyrotechnic charges at, at least, two pre-set levels of confinement a test vessel was built by TNO Defence, Security and Safety. For this study, three different flash powder compositions and black powder were selected. The generated residues were sampled on collecting plates and Nucleopore filters connected to a pump system in the immediate vicinity of the venting area for further analyses by SEM/EDX and XRD. From the results it follows that in the pressure range studied, the level of confinement seems to have a minor effect on the features of the generated residue particles. Because passive sampling by means of collector plates seemed doubtful and because the number of experiments had to be limited it is impossible to draw definitive conclusions. In addition to the level of confinement several other variables may affect size, shape and composition of pyrotechnic residues. More experiments and improved sampling methods are necessary to determine what variables have the most pronounced effect on shape size and composition of pyrotechnic residues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2009.01.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!