Background: The importance of toxicogenomics was recognized early in Korea and a group of researchers was trying to build up a research infrastructure and educational system. However, since the scale of the Korean pharmaceutical industry, which was expected to play the key role in toxicogenomics was small compared to that of advanced countries, industry-sponsored large-scale research projects and supporting infrastructures have been lacking in Korea.
Results: To improve this situation, the Korean government has exerted special efforts to promote toxicogenomics research and development the last few years as an initiative to stimulate a premature drug development industry on par with global competition and launched several large scale research projects recently. Researchers are also trying to keep pace with government efforts by organizing local scientist groups, training young toxicogenomics scientists, and widening the toxicogenomic research efforts to environmental toxicity as well. Research and development from bioinformatics and genomics venture companies are also contributing to uplifting the competitiveness of the toxicogenomics industry.
Conclusion: Toxicogenomics in Korea is making steady progress in many directions. It is gaining ground by government and related industries as well, the research is diversified to embrace environmental genomics, and local research groups are making strategic links to international research groups such as the MicroArray Quality Control (MAQC) consortium. We expect the advancement of the Korean toxicogenomics research program will be beneficial not only to the local society alone, but also to international scientists as a whole.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654489 | PMC |
http://dx.doi.org/10.1186/1753-6561-3-s2-s6 | DOI Listing |
Environ Pollut
January 2025
Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disease, that accounts for 50-75% of all dementia cases. Evidence demonstrates the link between particulate matter (PM) exposure and AD. However, there are still considerable research gaps.
View Article and Find Full Text PDFForensic Sci Int Genet
December 2024
Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d'Angers, Angers, France.
Interpreting postmortem concentrations of 3,4-Methylenedioxymethamphetamine (MDMA) remains challenging due to the wide range of reported results and the potential idiosyncratic nature of MDMA toxicity. Consequently, forensic pathologists often rely on a body of evidence to establish conclusions regarding the cause and the manner of death in death involving MDMA. Given these issues, implementing pharmacogenetics' (PGx)' testing may be beneficial.
View Article and Find Full Text PDFReprod Toxicol
December 2024
Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India, 121102. Electronic address:
Exposure to environmental pollutants during pregnancy can adversely affect fetal growth and postnatal development. While numerous studies have explored the interaction between environmental toxic chemicals and the folate pathway, few have examined their inhibitory effects on key targets. This computational study identified 27 maternal environmental toxicants using the Comparative Toxicogenomics Database (CTD) and analyzed them to identify their targets.
View Article and Find Full Text PDFSe Pu
January 2025
School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
Arch Toxicol
December 2024
Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
Emerging cellulose nanomaterials (CNMs) may have commercial impacts in multiple sectors, being their application particularly explored in the food sector. Thus, their potential adverse effects in the gastrointestinal tract should be evaluated before marketing. This work aimed to assess the safety of two CNMs (CNF-TEMPO and CMF-ENZ) through the investigation of their cytotoxicity, genotoxicity (comet and micronucleus assays), and capacity to induce reactive oxygen species in human intestinal cells, and their mutagenic effect using the Hprt gene mutation assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!