Comparison of analyses of the QTLMAS XII common dataset. I: Genomic selection.

BMC Proc

Aarhus University, Faculty of Agricultural Sciences, Department of Genetics & Biotechnology, Research Centre Foulum, DK-8830, Box 50, Tjele, Denmark.

Published: February 2009

A dataset was simulated and distributed to participants of the QTLMAS XII workshop who were invited to develop genomic selection models. Each contributing group was asked to describe the model development and validation as well as to submit genomic predictions for three generations of individuals, for which they only knew the genotypes. The organisers used these genomic predictions to perform the final validation by comparison to the true breeding values, which were known only to the organisers. Methods used by the 5 groups fell in 3 classes 1) fixed effects models 2) BLUP models, and 3) Bayesian MCMC based models. The Bayesian analyses gave the highest accuracies, followed by the BLUP models, while the fixed effects models generally had low accuracies and large error variance. The best BLUP models as well as the best Bayesian models gave unbiased predictions. The BLUP models are clearly sensitive to the assumed SNP variance, because they do not estimate SNP variance, but take the specified variance as the true variance. The current comparison suggests that Bayesian analyses on haplotypes or SNPs are the most promising approach for Genomic selection although the BLUP models may provide a computationally attractive alternative with little loss of efficiency. On the other hand fixed effect type models are unlikely to provide any gain over traditional pedigree indexes for selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654490PMC
http://dx.doi.org/10.1186/1753-6561-3-s1-s1DOI Listing

Publication Analysis

Top Keywords

blup models
20
genomic selection
12
models
11
qtlmas xii
8
genomic predictions
8
fixed effects
8
effects models
8
models bayesian
8
bayesian analyses
8
snp variance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!