Object: The management of upper cervical spinal instability in children continues to represent a technical challenge. Traditionally, a number of wiring techniques followed by halo orthosis have been applied; however, they have been associated with a high rate of nonunion and poor tolerance for the halo. Alternatively, C1-2 transarticular screws and C-2 pars/pedicle screws allow more rigid fixation, but their placement is technically demanding and associated with vertebral artery injuries. Recently, C-2 translaminar screws have been added to the armamentarium of the pediatric spine surgeon as a technically simple and biomechanically efficient means of fixation. However, the use of subaxial translaminar screws have not been described in the general pediatric population. There are no published data that describe the anatomical considerations and potential limitations of this technique in the pediatric population.
Methods: The cervical vertebrae of 69 pediatric patients were studied on CT scans. Laminar height and thickness were measured. Statistical analysis was performed using unpaired Student t-tests (p<0.05) and linear regression analysis.
Results: The mean laminar heights at C-2, C-3, C-4, C-5, C-6, and C-7, respectively, were 9.76+/-2.22 mm, 8.22+/-2.24 mm, 8.09+/-2.38 mm, 8.51+/-2.34 mm, 9.30+/-2.54 mm, and 11.65+/-2.65 mm. Mean laminar thickness at C-2, C-3, C-4, C-5, C-6, and C-7, respectively, were 5.07+/-1.07 mm, 2.67+/-0.79 mm, 2.18+/-0.73 mm, 2.04+/-0.60 mm, 2.52 +/- 0.66 mm, and 3.84+/-0.96 mm. In 50.7% of C-2 laminae, the anatomy could accept at least 1 translaminar screw (laminar thickness>or=4 mm).
Conclusions: Overall, the anatomy in 30.4% of patients younger than 16 years old could accept bilateral C-2 translaminar screws. However, the anatomy of the subaxial cervical spine only rarely could accept translaminar screws. This study establishes anatomical guidelines to allow for accurate and safe screw selection and insertion. Preoperative planning with thin-cut CT and sagittal reconstruction is essential for safe screw placement using this technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2008.11.PEDS08277 | DOI Listing |
World Neurosurg
January 2025
Department of Endocrinology, Yinzhou No.2 Hospital, Ningbo, Zhejiang 315040, China. Electronic address:
Objective: This study aims to evaluate the clinical outcomes of utilizing C1 posterior arch screws (PAS) combined with C2 translaminar screws as an adjunct for reinforcing upper cervical spine fixation.
Methods: A retrospective analysis was conducted on four male patients who underwent surgery involving C1 PASs and C2 translaminar screws between January 2022 and February 2024. Surgical technique involved the insertion of standard C1 lateral mass screws (LMS) and C2 pedicle screws, followed by the placement of C1 PASs and C2 translaminar screws for additional fixation.
J Clin Neurosci
February 2025
Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, 199 Dazhi Road, Harbin 150001, China. Electronic address:
Background: The atlantoaxial vertebral model was established in order to compare the biomechanical properties of C2 pedicle and translaminar screws from the perspective of the screws themselves.
Methods: A finite element model of the screw-vertebrae was developed. The screw load-displacement ratios were analysed under up/down and left/right load conditions; the vertebral load-displacement ratios under flexion/posterior extension (FLX/EXT), left/right lateral bending (LLB/RLB), and left/right rotation (LAR/RAR) load conditions; the bone-screw interface stress values and screw load-displacement ratios under physiological load conditions; and the structural stress values of the screw-rod structure under front/back and left/right load conditions.
Spine (Phila Pa 1976)
November 2024
Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.
Study Design: This retrospective study compared unilateral pedicle screw combined with contralateral translaminar facet joint screw (UPS+TFS) fixation with bilateral pedicle screw (BPS) fixation in patients undergoing minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) for single-segment lumbar degenerative disease.
Objective: To assess the long-term clinical efficacy of UPS+TFS fixation and BPS fixation in MIS-TLIF.
Summary Of Background Data: Limited research exists on the long-term clinical outcomes of UPS+TFS fixation in MIS-TLIF.
J Spine Surg
September 2024
Department of Spine Surgery, Hospital for Special Surgery, New York, NY, USA.
Orthop Surg
December 2024
Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
Objective: The incidence of degenerative diseases of the lumbar spine has increased in recent years. Unilateral pedicle screw combined with contralateral translaminar facet screw fixation offers the advantages of less trauma, better stability, and fewer complications. However, the surgical difficulty and suboptimal pinning accuracy of translaminar facet screw placement in clinical practice limit its use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!