The lifetime of H2O2 is an important factor in the feasibility of Fenton's reaction for soil and groundwater remediation. The lifetime of H2O2 was evaluated in Fenton's reaction and Fenton-like reactions with haematite and magnetite. H2O2 was more stable in the Fenton-like reaction than in the Fenton's reaction. The lifetime of H2O2 was also highly affected by the solution pH, and a pH buffered acidic condition was preferred. Fenton's reaction and Fenton-like reaction were tested for phenanthrene adsorbed on sand. Fenton-like reaction and acidic condition showed better degradation rates in comparing with those of Fenton's reaction and unbuffered systems. The dissolved iron species were measured in the Fenton's reaction, and Fenton-like reaction with haematite as a function of pH. In the presence of H2O2, ferric iron was the major dissolved iron species and the pH buffered to acidic condition maintained relatively high levels of dissolved iron in the aqueous solution. The higher iron concentration in the solution contributed to effective production of hydroxyl radical and degradation of organic contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330802468848 | DOI Listing |
Int J Pharm
January 2025
School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China. Electronic address:
This study was designed to assess the efficacy of iron oleate lipid nanoparticles (IO-LNPs) in inducing Fenton reaction as a therapeutic approach for bacterial infections caused by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), both of which are common pathogens in skin wound infections.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China. Electronic address:
As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:
Ferroptosis, a type of programmed cell death, represents a distinct paradigm in cell biology. It is characterized by the iron-dependent accumulation of reactive oxygen species, which induce lipid peroxidation (LPO), and is orchestrated by the interplay between iron, lipid peroxides, and glutathione. In this review, we emphasize the frequently overlooked role of iron in LPO beyond the classical iron-driven Fenton reaction in several crucial processes that regulate cellular iron homeostasis, including iron intake and export as well as ferritinophagy, and the emerging roles of endoplasmic reticulum-resident flavoprotein oxidoreductases, especially P450 oxidoreductases, in modulating LPO.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA.
Epigallocatechin gallate (EGCg), an abundant phytochemical in green tea, is an antioxidant that also binds proteins and complex metals. After gastrointestinal absorption, EGCg binds to serum albumin in the hydrophobic pocket between domains IIA and IIIA and overlaps with the Sudlow I site. Serum albumin also has two metal binding sites, a high-affinity N-terminal site (NTS) site that selectively binds Cu(II), and a low-affinity, less selective multi-metal binding site (MBS).
View Article and Find Full Text PDFMicroorganisms
January 2025
State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
Phenolic compounds are industrially versatile chemicals that have been successfully produced in microbial cell factories. Unfortunately, most phenolic compounds are highly toxic to cells in specific cellular environments or above a particular concentration because they form a complex with iron and promote hydroxyl radical production in Fenton reactions, resulting in the ferroptosis of cells. Here, we demonstrated that overexpression of efflux pumps and porins, including porins LamB and OmpN, and efflux pumps EmrAB, MdtABC, and SrpB, can enhance phloroglucinol (PG) tolerance by inhibiting the generation of hydroxyl radicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!