Complementary DNA (cDNA) sequencing can be used to sample an organism's transcriptome, and the generated EST sequences can be used for a variety of purposes. They are especially important for enhancing the utility of a genome sequence or for providing a gene catalog for a genome that has not or will not be sequenced. In planning and executing a cDNA project, several criteria must be considered. One should clearly define the project purpose, including organism tissue(s) choice, whether those tissues should be pooled, ability to acquire adequate amounts of clean and well-preserved tissue, choice of type(s) of library, and construction of a library (or libraries) that is compatible with project goals. In addition, one must possess the skills to construct the library (or libraries), keeping in mind the number of clones that will be necessary to meet the project requirements. If one is inexperienced in cDNA library construction, it might be wise to outsource the library production and/or sequence and analysis to a sequencing center or to a company that specializes in those activities. One should also be aware that new sequencing platforms are being marketed that may offer simpler protocols that can produce cDNA data in a more rapid and economical manner. Of course, the bioinformatics tools will have to be in place to de-convolute and aid in data analysis for these newer technologies. Possible funding sources for these projects include well-justified grant proposals, private funding, and/or collaborators with available funds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-60327-136-3_2 | DOI Listing |
Int J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:
Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, PR China. Electronic address:
In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) have emerged as extraordinary bioactive lipids, exhibiting diverse bioactivities, from the enhancement of insulin secretion and the optimization of blood glucose absorption to anti-inflammatory effects. The intricate nature of FAHFAs' structure reflects a synthetic challenge that requires the strategic introduction of ester bonds along the hydroxy fatty acid chain. Our research seeks to create an effective methodology for generating varied FAHFA derivatives.
View Article and Find Full Text PDFMicroorganisms
December 2024
Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Antimicrobial resistance (AMR) represents a critical global health threat, and a thorough understanding of resistance mechanisms in is needed to guide effective treatment interventions. This review explores recent advances for investigating AMR in , including machine learning for resistance pattern analysis, laboratory evolution to generate resistant mutants, mutant library construction, and genome sequencing for in-depth characterization. Key resistance mechanisms are discussed, including drug inactivation, target modification, altered transport, and metabolic adaptation.
View Article and Find Full Text PDFMar Drugs
January 2025
The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, China.
LCN2, a member of the lipocalin family, is associated with various tumors and inflammatory conditions. Despite the availability of known inhibitors, none have been approved for clinical use. In this study, marine compounds were screened for their ability to inhibit LCN2 using pharmacophore models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!