Molecular diagnosis of von Willebrand Disease (VWD) is particularly complex. The autosomal von Willebrand factor gene (VWF) is large and highly polymorphic, and there is a highly homologous (>96%) partial pseudogene in chromosome 22. Because of these difficulties, application of molecular study of VWD to the clinical routine has been considerably delayed. Recent advances in sequencing technology and bioinformatics could convert direct sequencing of the complete VWF into a routine diagnostic tool for VWD, which is especially desirable in types 1 and 3. This study describes a highly optimized procedure in which all the coding and intronic flanking regions of VWF are amplified under identical thermocycling parameters in a ready-to-use PCR plate format. The entire sequencing procedure, from blood extraction to mutation identification, can be done within 24 hours, resulting in a simple, versatile, cost-effective strategy with little hands-on time requirements. To validate the method, we performed full-length VWF sequencing of 21 index cases including seven of each VWD type. A total of 30 VWF genetic variations were identified. Twelve of these sequence variations are new, including four missense, one nonsense, one insertion, the first insertion-deletion described in VWF, and 5 potential splice site mutations. To our knowledge, this is the fastest and most efficient protocol designed to date for complete sequencing of the VWF coding region in the molecular diagnosis of VWD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1160/th08-08-0500 | DOI Listing |
Anticancer Drugs
January 2025
Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center.
In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.
Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.
Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.
J Appl Genet
January 2025
Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland.
Identification of chromosomal abnormalities is an important issue in animal breeding and veterinary medicine. Routine cytogenetic diagnosis of domestic animals began in the 1960s with the aim of identifying carriers of centric fusion between chromosome 1 and 29 in cattle. In the 1970s, chromosome banding techniques were introduced, and in the 1980s, the first cytogenomic techniques, based on the development of locus- and chromosome-specific probes, were used.
View Article and Find Full Text PDFDig Dis Sci
January 2025
INFINY Institute, Department of Gastroenterology, CHRU Nancy, INSERM NGERE, Université de Lorraine, 54500 , Vandœuvre-lès-Nancy, France.
Background: Therapeutic drug monitoring is important for optimizing anti-tumor necrosis factor-α (TNF-α) therapy in inflammatory bowel disease. However, the exposure-response relationship has never been assessed in pouchitis.
Aims: To explore associations between anti-TNF-α drug concentration and pouchitis disease activity in patients with a background of ulcerative colitis.
Expert Rev Mol Diagn
January 2025
Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, China, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.
Introduction: Rapid and accurate laboratory diagnosis is essential for the effective treatment of bloodstream infection (BSI).
Areas Covered: This review aims to address novel and traditional approaches that exhibit different performance characteristics in the diagnosis of BSI. In particular, the authors will discuss the pros and cons of the blood culture-based phenotypic methods, nucleic acid-targeted molecular methods, and host response-targeted biomarker detection in the diagnosis of BSI.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!