Hypoxia-inducible factor-1 (HIF-1) is a known cancer progression factor, promoting growth, spread, and metastasis. However, in selected contexts, HIF-1 is a tumor suppressor coordinating hypoxic cell cycle suppression and apoptosis. Prior studies focused on HIF-1 function in established malignancy; however, little is known about its role during the entire process of carcinogenesis from neoplasia induction to malignancy. Here, we tested HIF-1 gain of function during multistage murine skin chemical carcinogenesis in K14-HIF-1alpha(Pro402A564G) (K14-HIF-1alphaDPM) transgenic mice. Transgenic papillomas appeared earlier and were more numerous (6 +/- 3 transgenic versus 2 +/- 1.5 nontransgenic papillomas per mouse), yet they were more differentiated, their proliferation was lower, and their malignant conversion was profoundly inhibited (7% in transgenic versus 40% in nontransgenic mice). Moreover, transgenic cancers maintained squamous differentiation whereas epithelial-mesenchymal transformation was frequent in nontransgenic malignancies. Transgenic basal keratinocytes up-regulated the HIF-1 target N-myc downstream regulated gene-1, a known tumor suppressor gene in human malignancy, and its expression was maintained in transgenic papillomas and cancer. We also discovered a novel HIF-1 target gene, selenium binding protein-1 (Selenbp1), a gene of unknown function whose expression is lost in human cancer. Thus, HIF-1 can function as a tumor suppressor through transactivation of genes that are themselves targets for negative selection in human cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756430 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-08-3643 | DOI Listing |
J Mol Histol
January 2025
Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo, 315040, Zhejiang, China.
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis.
View Article and Find Full Text PDFProtein Sci
February 2025
Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.
PADI4 is one of the human isoforms of a family of enzymes involved in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase that is critical for degradation of the tumor suppressor gene p53. We have previously shown that there is an interaction between MDM2 and PADI4 in cellulo, and that such interaction occurs through the N-terminal region of MDM2, N-MDM2, and in particular through residues Thr26, Val28, Phe91, and Lys98.
View Article and Find Full Text PDFThorac Cancer
January 2025
Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: The clinical implications of different EML4-ALK fusion variants remain poorly elucidated in the era of second-generation ALK inhibitors.
Methods: This was a retrospective cohort study, wherein patients diagnosed with locally advanced or metastatic non-small cell lung cancer harboring EML4-ALK fusion were stratified into two cohorts based on their first-line treatment: Cohort 1 received alectinib, while Cohort 2 received crizotinib. Statistical analysis was employed to investigate the impact of different EML4-ALK variants and TP53 status on the efficacy of first-line ALK-TKIs.
Front Oncol
January 2025
Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
Erythropoietin-producing hepatocellular (Eph) receptors comprise the largest group of surface receptors and are responsible for cellular signals. Eph/ephrin signaling has been identified to play a role in key cancer development and progression processes, especially in the upper gastrointestinal tract. The Eph/ephrin system has been described as a tumor suppressor in duodenal cancer, while in esophageal, gastric, hepatic, and pancreatic cancer, the system has been related to tumor progression.
View Article and Find Full Text PDFiScience
January 2025
Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
Proton pump inhibitors have been explored for potentiating cancer therapies via reverting the tumor acidity and promoting the activation of anti-tumor immune responses. To regulate the intracellular pH of melanoma and immunosuppressive myeloid cells, we developed poly(L-lactide-co-glycolide) nanoparticles loaded with esomeprazole (ESO-NPs). The effect of ESO-NPs on melanoma cells was observed as alkalinization and reduction of melanin content accompanied by a decrease of microphthalmia-associated transcription factor (MITF), poliovirus receptor (PVR), and programmed death ligand 1 (PD-L1) immune checkpoint expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!