Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The question of whether living organisms possess autonomy of action is tied up with the nature of causal efficacy. Yet the nature of organisms is such that they frequently defy conventional causal language. Did the fig wasp select the fig, or vice versa? Is this an epithelial cell because of its genetic structure, or because it develops within the epithelium? The intimate coupling of biological levels of organisation leads developmental systems theory to deconstruct the biological organism into a life-cycle process which constitutes itself from the resources available within a complete developmental system. This radical proposal necessarily raises questions regarding the ontological status of organisms: Does an organism possess existence distinguishable from its molecular composition and social environment? The ambiguity of biological causality makes such questions difficult to answer or even formulate, and computational biology has an important role to play in operationalising the language in which they are framed. In this article we review the role played by computational biomodels in shedding light on the ontological status of organisms. These models are drawn from backgrounds ranging from molecular kinetics to niche construction, and all attempt to trace biological processes to a causal, and therefore existent, source. We conclude that computational biomodelling plays a fertile role in furnishing a proof of concept for conjectures in the philosophy of biology, and suggests the need for a process-based ontology of biological systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bib/bbp003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!