Individuals with early Alzheimer's disease (AD) suffer from a selective and profound failure to form new memories. A novel molecular mechanism with implications for therapeutics and diagnostics is now emerging in which the specificity of AD for memory derives from disruption of plasticity at synapses targeted by toxic Abeta oligomers (also known as ADDLs). ADDLs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Abeta fibrils deposited in amyloid plaques. The AD-like cellular pathologies induced by ADDLs suggest their impact could provide a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Discovery of these new toxins has provided an appealing target for disease-modifying immunotherapy. For optimal protection against these toxins, antibodies should bind to the pathological oligomers without being depleted by their monomeric subunits, which are rapidly generated by membrane protein turnover. A solution to this problem is likely to come from the continued development of conformation-specific antibodies, as described here. Prototype conformation-specific antibodies, not yet in the clinic, have been introduced and utilized in multiple applications for their ability to bind with high specificity and affinity to ADDLs. It can be anticipated that further development of such antibodies for use in clinical trials will come in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/187152709787601876 | DOI Listing |
FASEB J
November 2024
Department of Preclinical Research Division, APRINOIA Therapeutics Inc., Tokyo, Japan.
J Cell Sci
December 2024
Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
Tight junctions regulate epithelial barrier function and have been shown to be influenced by multiple classes of proteins. Apical integrins have been identified as potential regulators of epithelial barrier function; however, only indirect approaches have been used to measure integrin regulation of the epithelial barrier. Here, we used polymeric nanowires conjugated with anti-integrin β1 antibodies to specifically target apically localized integrins in either their closed or open conformation.
View Article and Find Full Text PDFACS Cent Sci
October 2024
Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States.
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the main target of neutralizing antibodies. Although they are infrequently elicited during infection or vaccination, antibodies that bind to the conformation-specific cryptic face of the RBD display remarkable breadth of binding and neutralization across . Here, we employed the immunofocusing technique PMD (protect, modify, deprotect) to create RBD immunogens (PMD-RBD) specifically designed to focus the antibody response toward the cryptic-face epitope recognized by the broadly neutralizing antibody S2X259.
View Article and Find Full Text PDFProtein Sci
September 2024
Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA.
The microtubule associated protein, tau, is implicated in a multitude of neurodegenerative disorders that are collectively termed as tauopathies. These disorders are characterized by the presence of tau aggregates within the brain of afflicted individuals. Mutations within the MAPT gene that encodes the tau protein form the genetic backdrop for familial forms of tauopathies, such as frontotemporal dementia (FTD), but the molecular consequences of such alterations and their pathological effects are unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2024
Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA 94143.
Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although integrin activation has been extensively studied in circulating cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent cells such as smooth muscle. Here, we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families, respectively, to enhance adhesion of airway smooth muscle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!