Use of acoustic navigation signals for simultaneous localization and sound-speed estimation.

J Acoust Soc Am

Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.

Published: March 2009

The possibility of exploiting low-resolution acoustic signals used for the navigation of Lagrangian floats to simultaneously estimate the speed of sound is studied. Acoustic navigation of Lagrangian floats is regularly carried out by measuring travel times from three fixed stations assuming a known value for the speed of sound. The sound speed is considered here as a variable of the problem to be estimated from the travel-time data simultaneously with the horizontal location of the float. The estimation problem is linearized and solved analytically, and closed-form expressions for the sound-speed estimation errors are derived. Typical acoustic navigation (RAFOS) signals are characterized by limited time resolution (0.2 s) challenging the accuracy of sound-speed estimation, depending on the location of the float with respect to the fixed stations. By exploiting travel-time data from multiple floats, the sound-speed estimation accuracy can be increased, which reflects in higher localization accuracy as well. In the case of a single float improved sound-speed estimates and localization results can be obtained by combining travel-time data from different float locations. Numerical results verify the theoretical error estimates and demonstrate the efficiency of the method.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.3076202DOI Listing

Publication Analysis

Top Keywords

sound-speed estimation
16
acoustic navigation
12
travel-time data
12
navigation lagrangian
8
lagrangian floats
8
speed sound
8
fixed stations
8
location float
8
sound-speed
5
estimation
5

Similar Publications

Sound speed data measured using a dual-path pulse-echo instrument are reported for pure -1,2-dichloroethene (R-1130(E)) and an azeotropic blend of -1,1,1,4,4,4-hexafluorobutene (R-1336mzz(Z)) and R-1130(E) with a composition of 74.8 mass % R-1336mzz(Z) with the balance being R-1130(E). The azeotropic blend of R-1336mzz(Z)/1130(E) is classified as R-514A in ANSI/ASHRAE standard 34.

View Article and Find Full Text PDF

Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.

Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.

View Article and Find Full Text PDF

Estimation of the spatial variability of the New England Mud Patch geoacoustic properties using a distributed array of hydrophones and deep learninga).

J Acoust Soc Am

December 2024

Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.

This article presents a spatial environmental inversion scheme using broadband impulse signals with deep learning (DL) to model a single spatially-varying sediment layer over a fixed basement. The method is applied to data from the Seabed Characterization Experiment 2022 (SBCEX22) in the New England Mud-Patch (NEMP). Signal Underwater Sound (SUS) explosive charges generated impulsive signals recorded by a distributed array of bottom-moored hydrophones.

View Article and Find Full Text PDF

Inversion for water column sound speed profile from acoustic travel times using empirical orthogonal functions.

J Acoust Soc Am

December 2024

Naval Physical and Oceanographic Laboratory, Defence Research and Development Organisation, Thrikkakara P. O., Kochi, Kerala 682021, India.

An acoustic propagation experiment was conducted in the western continental shelf of India (off Kollam, Kerala) in water depth of ∼71 m with seafloor consisting of hard sandy sediments. The multipath arrival times are obtained from peaks in acoustic impulse response measurements made on a single hydrophone for two source-receiver ranges of 245 m and 320 m. The arrival times are used for inverting the water column sound speed profile (SSP) utilizing the empirical orthogonal functions (EOFs), which can completely describe large datasets.

View Article and Find Full Text PDF

Learning-based sound speed estimation and aberration correction for linear-array photoacoustic imaging.

Photoacoustics

August 2024

School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, United Kingdom.

Photoacoustic (PA) image reconstruction involves acoustic inversion that necessitates the specification of the speed of sound (SoS) within the medium of propagation. Due to the lack of information on the spatial distribution of the SoS within heterogeneous soft tissue, a homogeneous SoS distribution (such as 1540 m/s) is typically assumed in PA image reconstruction, similar to that of ultrasound (US) imaging. Failure to compensate for the SoS variations leads to aberration artefacts, deteriorating the image quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!