Interfacial mobility of polymers on inorganic solids.

J Phys Chem B

Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan.

Published: April 2009

The segmental mobility of a typical amorphous polymer, polystyrene, at the interfaces with solid substrates was noninvasively examined by fluorescence lifetime measurements using evanescent wave excitation in conjunction with coarse-grained molecular dynamics simulation. The glass transition temperature (T(g)) was discernibly higher at the interface than in the internal bulk region. Measurements at different incident angles of excitation pulses revealed that T(g) became higher closer to the interface. The gradient became more marked with an increasing difference in the free energy at the interface between the polymer and solid substrate. The T(g) value at the interface decreased with decreasing molecular weight. However, the decrement for the interfacial T(g) was not as much as that for the bulk T(g), due to the restriction of chain end portions by the substrate. Finally, it was observed that when a film became thinner than 50 nm, the depressed mobility at the interface coupled with the enhanced mobility induced by the presence of the surface. The experimental and simulation results were in good accord with each other.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp810370fDOI Listing

Publication Analysis

Top Keywords

interface
5
interfacial mobility
4
mobility polymers
4
polymers inorganic
4
inorganic solids
4
solids segmental
4
segmental mobility
4
mobility typical
4
typical amorphous
4
amorphous polymer
4

Similar Publications

Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.

View Article and Find Full Text PDF

The creatine (Cr) biosynthesis pathway buffers ATP in metabolically active tissues. We investigated whether sex of fetus and day of gestation influence Cr in endometrial and conceptus tissues from gilts on Days 60 and Day 90 (n = 6 gilts/day) of gestation. Uterine and conceptus tissues associated with one male and one female fetus from each gilt were analyzed for creatine, mRNAs, and proteins for Cr biosynthesis.

View Article and Find Full Text PDF

Purpose: To analyse anterior segment optical coherence tomography (AS-OCT) parameters of graft dehiscence after Descemet membrane endothelial keratoplasty (DMEK) for graft failure post penetrating keratoplasty (PK).

Methods: Retrospective evaluation of AS-OCT images of 142 dehiscences post-DMEK in 75 eyes. Dehiscences' size, depth, location, correlation with graft-host interface (GHI) override and step at GHI were assessed.

View Article and Find Full Text PDF

Non-canonical Wnt signaling pathway activated NFATC3 promotes GDF15 expression in MASH: prospective analyses of UK biobank proteomic data.

Hepatol Int

January 2025

National Clinical Research Center for Digestive Disease, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Background: Our previous research demonstrated that growth differentiation factor 15 (GDF15) exhibited superior predictive capability for metabolic dysfunction-associated steatohepatitis (MASH) development with an AUC of 0.86 at 10 years before disease diagnosis. However, the specific pathways and molecular mechanisms associated with GDF15 expression during MASH development remain to be fully investigated in humans.

View Article and Find Full Text PDF

Photoinitiated Thiol-Ene Click Reaction for Preparation of Highly Adhesive and Mechanically Stable Silicone Coatings for Marine Antifouling and Anticorrosion.

ACS Appl Mater Interfaces

January 2025

Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.

Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!