This study investigates a poly(epsilon-caprolactone)-graft-type II collagen-graft-chondroitin sulfate (PCL-g-COL-g-CS) biomaterial as a scaffold for cartilage tissue engineering. Biodegradable polyester, PCL, was utilized to fabricate three-dimensional (3D) porous scaffolds by particulate leaching. The PCL scaffold was then surface modified by chemical bonding of 1,6-hexanediamine and the grafting of a bioactive polymer layer of COL and CS with the help of 1-ethyl-3-(3-dimethyl- aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) on the modified PCL surface to produce PCL-g-COL and PCL-g-COL-g-CS, respectively. The characteristics of these modified and grafted matrices were examined by ESCA, aminolysis, collagen and CS assay, porosity and water-binding capacity. Grafted COL and CS markedly increased water-binding capacity, and promoted the spreading and growth of chondrocytes. During a 4-week culture period, PCL-g-COL and PCL-g-COL-g-CS matrices both provided more cell proliferation, as determined by measuring the DNA assay. Additionally, a larger amount of secreted collagen and glycosaminoglycans (GAGs) appeared in the PCL-g-COL-g-CS matrices than in the control (PCL) as indicated by the histochemical sections via Hematoxylin and eosin (H&E) stain, Masson trichrome stain and Safranin-O stain. The chondrocytes were induced to function normally; the cell phenotype was maintained, and the GAGs and collagen in the PCL-g-COL-g-CS scaffold were secreted in vitro. These results serve as a basis for future studies of the fabrication process and reveal the potential biocompatibility of the biomimetic matrix for regenerating articular cartilage or other organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.32198 | DOI Listing |
Histochem Cell Biol
January 2025
Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA).
View Article and Find Full Text PDFSTAR Protoc
January 2025
Graz University of Technology, Institute for Chemistry and Technology of Biobased System (IBioSys), Stremayrgasse 9, 8010 Graz, Austria; Institute of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia; Members of the European Polysaccharide Network of Excellence (EPNOE).
Three-dimensional (3D) and porous scaffolds made from nanocellulosic materials hold significant potential in tissue engineering (TE). Here, we present a protocol for fabricating self-standing (nano)cellulose-based 3D scaffolds designed for in vitro testing of cells from skin and cartilage tissues. We describe steps for preparation of nanocellulose ink, scaffold formation using 3D printing, and freeze-drying.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic.
The use of scaffolds for osteochondral tissue regeneration requires an appropriate selection of materials and manufacturing techniques that provide the basis for supporting both cartilage and bone tissue formation. As scaffolds are designed to replicate a part of the replaced tissue and ensure cell growth and differentiation, implantable materials have to meet various biological requirements, e.g.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA.
Three-dimensional printing was introduced in the 1980s, though bioprinting started developing a few years later. Today, 3D bioprinting is making inroads in medical fields, including the production of biomedical supplies intended for internal use, such as biodegradable staples. Medical bioprinting enables versatility and flexibility on demand and is able to modify and individualize production using several established printing methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!