Recent research has implicated the C-terminus of G-protein coupled receptors in key events such as receptor activation and subsequent intracellular sorting, yet obtaining structural information of the entire C-tail has proven a formidable task. Here, a peptide corresponding to the full-length C-tail of the human CB1 receptor (residues 400-472) was expressed in E.coli and purified in a soluble form. Circular dichroism (CD) spectroscopy revealed that the peptide adopts an alpha-helical conformation in negatively charged and zwitterionic detergents (48-51% and 36-38%, respectively), whereas it exhibited the CD signature of unordered structure at low concentration in aqueous solution. Interestingly, 27% helicity was displayed at high peptide concentration suggesting that self-association induces helix formation in the absence of a membrane mimetic. NMR spectroscopy of the doubly labeled ((15)N- and (13)C-) C-terminus in dodecylphosphocholine (DPC) identified two amphipathic alpha-helical domains. The first domain, S401-F412, corresponds to the helix 8 common to G protein-coupled receptors while the second domain, A440-M461, is a newly identified structural motif in the distal region of the carboxyl-terminus of the receptor. Molecular modeling of the C-tail in DPC indicates that both helices lie parallel to the plane of the membrane with their hydrophobic and hydrophilic faces poised for critical interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698224 | PMC |
http://dx.doi.org/10.1002/bip.21179 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!