Physicochemical characteristics and sensory profile of honey samples from stingless bees (Apidae: Meliponinae) submitted to a dehumidification process.

An Acad Bras Cienc

Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brasil, 44380-000.

Published: March 2009

This study was conducted to evaluate the effect of a dehumidification process on the physicochemical and sensory characteristics of stingless-bee honey. Melipona scutellaris and M. quadrifasciata honey samples were submitted to a dehumidification process and to physicochemical (reducing sugars, apparent sucrose, moisture, diastatic activity, hydroxymethylfurfural, ash, pH, acidity, and electric conductivity) and sensory evaluations (fluidity, color, aroma, crystallization,flavor,and acceptability). The results indicated that the dehumidification process does not interfere with honey quality and acceptability.

Download full-text PDF

Source
http://dx.doi.org/10.1590/s0001-37652009000100015DOI Listing

Publication Analysis

Top Keywords

dehumidification process
16
honey samples
8
submitted dehumidification
8
process physicochemical
8
physicochemical characteristics
4
characteristics sensory
4
sensory profile
4
honey
4
profile honey
4
samples stingless
4

Similar Publications

Mold remediation in homes after flooding.

J Allergy Clin Immunol Pract

December 2024

Ochsner Health System, Department of Allergy/Immunology and Tulane University, School of Public Health and Tropical Medicine. Electronic address:

Flooding events, particularly those caused by hurricanes and other large storm events, are increasingly fueled by climate change. Stormwater intrusion into homes creates ideal conditions for mold growth. Homes inundated by floodwaters become vulnerable to production of mold spores, particulate matter, and volatile organic compounds, all of which trigger a variety of poor health outcomes.

View Article and Find Full Text PDF

Effect of Material Extrusion Process Parameters to Enhance Water Vapour Adsorption Capacity of PLA/Wood Composite Printed Parts.

Polymers (Basel)

October 2024

Departamento de Química-Física y Termodinámica Aplicada, Escuela Politécnica Superior, Universidad de Córdoba, Campus de Rabanales, Antigua Carretera Nacional IV, km 396, 14071 Córdoba, Spain.

This study aims to optimise the water vapour adsorption capacity of polylactic acid (PLA) and wood composite materials for application in dehumidification systems through material extrusion additive manufacturing. By analysing key process parameters, including nozzle diameter, layer height, and temperature, the research evaluates their impact on the porosity and adsorption performance of the composite. Additionally, the influence of different infill densities on moisture absorption is investigated.

View Article and Find Full Text PDF

Hydrofluorocarbons (HFCs) and so-called hydrofluoroolefins (HFOs) are used as refrigerants in air conditioning, refrigeration, chillers, heat pumps and devices for dehumidification and drying. However, many HFCs, including R-134a and R-125, have a high global warming potential and some of the HFCs and HFOs degrade atmospherically and form trifluoroacetic acid (TFA) as a persistent degradation product. Rising levels of TFA around the globe reveal an urgent need to replace fluorinated refrigerants with non-fluorinated working fluids to avoid direct emissions due to leakage, incorrect loading or removal.

View Article and Find Full Text PDF

Thermodynamic limits of humidifiers and dehumidifiers.

iScience

July 2024

AVIC General Huanan Aircraft Industry Co., Ltd, Zhuhai 519000, China.

Humidification and dehumidification are among the most important desalination technologies, in which humidifiers and dehumidifiers are the key components. Previous research has mainly focused on overall system improvement, but few studies have focused on the thermodynamic limitations of the humidification and dehumidification processes. By introducing temperature and enthalpy effectiveness, the thermodynamic limits have been explored.

View Article and Find Full Text PDF

The primary challenge during the secondary bonding process of full-height honeycomb sandwich structures is the aramid honeycomb core's height shrinkage. This paper systematically investigated the height evolution behavior of the honeycomb core by using a creep testing machine. The results showed that the out-of-plane compression deformation curve of aramid honeycomb cores is mainly divided into three stages: the dehumidification stage, the pressurization stage and the creep stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!