Regulated exocytosis is a crucial event for intercellular communication between neurons and astrocytes within the CNS. The soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex, composed of synaptobrevin 2, syntaxin and synaptosome-associated protein of 25 kDa or 23 kDa (SNAP25 or SNAP23), is essential in this process. It was reported that SNAP25 and SNAP23 have distinct roles in exocytotic release, where SNAP25, but not SNAP23, supports an exocytotic burst. It is not clear, however, whether this is due to the intrinsic properties of the ternary SNARE complex, containing either SNAP25 or SNAP23, or perhaps due to the differential association of these proteins with ancillary proteins to the complex. Here, using force spectroscopy, we show from single molecule investigations of the SNARE complex, that SNAP23A created a local interaction at the ionic layer by cuffing syntaxin 1A and synaptobrevin 2, similar to the action of SNAP25B; thus either of the ternary complexes would allow positioning of vesicles at a maximal distance of approximately 13 nm from the plasma membrane. However, the stability of the ternary SNARE complex containing SNAP23A is less than half of that for the complex containing SNAP25B. Thus, differences in the stability of the two different ternary complexes could underlie some of the SNAP25/23 differential ability to control the exocytotic burst.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689335 | PMC |
http://dx.doi.org/10.1113/jphysiol.2009.168575 | DOI Listing |
Commun Biol
January 2024
Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
SNARE-mediated vesicular transport is thought to play roles in photoreceptor glutamate exocytosis and photopigment delivery. However, the functions of Synaptosomal-associated protein (SNAP) isoforms in photoreceptors are unknown. Here, we revisit the expression of SNAP-23 and SNAP-25 and generate photoreceptor-specific knockout mice to investigate their roles.
View Article and Find Full Text PDFNutrients
December 2023
Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
Alzheimer's disease (AD), is a progressive neurodegenerative disorder that involves the deposition of β-amyloid plaques and the clinical symptoms of confusion, memory loss, and cognitive dysfunction. Despite enormous progress in the field, no curative treatment is available. Therefore, the current study was designed to determine the neuroprotective effects of N-methyl-(2S, 4R)-Trans-4-hydroxy-L-proline (NMP) obtained from Sideroxylon obtusifolium, a Brazilian folk medicine with anti-inflammatory and anti-oxidative properties.
View Article and Find Full Text PDFFront Pharmacol
July 2023
Department of Urology, China Rehabilitation Research Center, Beijing, China.
Intradetrusor injection of botulinum toxin A (BTX-A) is an effective treatment for overactive bladder (OAB). However, the occurrence of adverse events associated with BTX-A injection therapy hinders its acceptance among patients and its clinical promotion. Intravesical instillation of BTX-A offers a promising alternative to injection therapy for treating OAB.
View Article and Find Full Text PDFBiosci Rep
May 2023
Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361104, China.
SNAP25 is a core protein of the SNARE complex, which mediates stimulus-dependent secretion of insulin from the pancreatic β cells. SNAP23 is a SNAP25 homolog, however, the functional role of SNAP23 in the exocytic secretion of insulin is not known. Therefore, in the present study, we investigated the functional role of SNAP23 in the insulin secretory pathway.
View Article and Find Full Text PDFPLoS Pathog
March 2023
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China.
Exocytosis is a key active process in cells by which proteins are released in bulk via the fusion of exocytic vesicles with the plasma membrane. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein-mediated vesicle fusion with the plasma membrane is essential in most exocytotic pathways. In mammalian cells, the vesicular fusion step of exocytosis is normally mediated by Syntaxin-1 (Stx1) and SNAP25 family proteins (SNAP25 and SNAP23).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!