[Cloning and characterization of a transcription factor ZmNAC1 in maize (Zea mays)].

Yi Chuan

Hi-Tech Research Centre, Shandong Academy of Agricultural Sciences; Key Laboratory for Genetic Improvement of Crop, Animal and Poultry of Shandong Province, Jinan 250100, China.

Published: February 2009

NAC transcription factors are a family of functionally diverse proteins. They are unique to plants and play an important role in regulation of plant growth and development, hormone regulation and responses to various stresses. A cDNA encoding the NAC-like gene homologue was isolated from maize (Zea mays L.) by RT-PCR and designated ZmNAC1 (GenBank Accession No. EU224278). Sequence analysis showed that cDNA of ZmNAC1 was 1,029 bp long and contained a single open reading frame (ORF, 26 to approximately 907 bp). The predicted ZmNAC1 protein has 293 amino acids with an estimated molecular mass of 32.3 kDa and an isoelectric point of 8.65. RT-PCR analysis showed that the expression of ZmNAC1 was induced by low temperature, PEG, salt, and ABA, respectively. These results suggest that ZmNAC1 may play important roles in biotic and abiotic resistance pathways. This is the first NAC-like gene reported in maize.

Download full-text PDF

Source
http://dx.doi.org/10.3724/sp.j.1005.2009.00199DOI Listing

Publication Analysis

Top Keywords

maize zea
8
nac-like gene
8
zmnac1
6
[cloning characterization
4
characterization transcription
4
transcription factor
4
factor zmnac1
4
zmnac1 maize
4
zea mays]
4
mays] nac
4

Similar Publications

Phylogenetic relationships and genetic diversity of Tunisian maize landraces.

PLoS One

January 2025

Misión Biológica de Galicia (Spanish National Research Council, CSIC) Apdo 28, Pontevedra, Spain.

Based on history, maize was first introduced into Tunisia and northern Africa, at large, from the south of Spain. Several subsequent introductions were made from diverse origins, generating new landraces by recombination and selection for adaptation to arid environments. This study aimed to investigate the phylogenetic relationships among Tunisian maize landraces with possible sources of introduction from neighboring countries.

View Article and Find Full Text PDF

Multifunctional plant growth-promoting rhizobacteria (PGPR) have garnered significant attention in agricultural applications; however, a few have applied them in crop rotation or intercropping fields. To identify PGPR with strong colonization ability and broad spectrum benefit, we screened strains from the local tobacco rhizosphere and evaluated their growth-promoting effects across various crops and farming systems. In this study, strain L8, identified as , was selected as a multifunctional PGPR capable of producing indole-3-acetic acid (IAA), solubilizing potassium, and mobilizing both organic and inorganic phosphorus.

View Article and Find Full Text PDF

Nitrogen fertilizer application is an important method for the production of high-quality maize. However, nitrogen fertilizer addition patterns vary according to regional climate, field management practices, and soil conditions. In this study, a meta-analysis was used to quantify the yield effects of nitrogen addition on maize, and meta-regression analysis and a random forest model were used to study the main factors affecting the yield effects of nitrogen addition on maize.

View Article and Find Full Text PDF

The increasing prevalence of cadmium (Cd)-contaminated agricultural soils threatens the safe production of maize ( L.). To decrease the Cd accumulation in maize, a pot experiment was conducted to study the effects of humic acid on the growth and Cd uptake of maize seedlings.

View Article and Find Full Text PDF

Waterlogging (WL) is an important abiotic stress, severely affecting plant growth and development, inhibiting root respiration and degradation of chlorophyll, senescence of leaves and chlorosis leading to substantial yield loss. These intensities of yield losses generally depend on the duration of WL and crop growth stages. Maize being a dry land crop is particularly sensitive to WL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!