Innate immunity, coagulation and surgery.

Front Biosci (Landmark Ed)

Molecular Cardioprotection and Inflammation Group, University Hospitals Bristol NHS Foundation Trust, Bristol, BS2 8HW, United Kingdom.

Published: January 2009

Inflammation is the host's defense mechanism to infection or trauma including surgical procedures. In the clinic, non-infectious inflammation plays an important part in cardiology (e.g. Percutaneous transluminal coronary angioplasty, PTCA), intensive care medicine (e.g. polytrauma), cardiac (e.g. extracorporeal circulation) and vascular surgery (e.g. reperfusion injury). An imbalance of the inflammatory response can cause an acute condition like sepsis or long-term Cardiovascular disease (CVD), both of which are leading killers in the Western world. Alterations in coagulation, innate immunity and endothelial function represent key aspects in the mechanism of inflammation and are the link between the pathogenesis of these two diseases. Studying inflammatory pathways or targeting specific mediators during inflammation may help to develop strategies to improve the clinical outcome of patients undergoing major surgery, where postoperative inflammation plays a crucial role.

Download full-text PDF

Source
http://dx.doi.org/10.2741/3427DOI Listing

Publication Analysis

Top Keywords

innate immunity
8
inflammation plays
8
inflammation
5
immunity coagulation
4
coagulation surgery
4
surgery inflammation
4
inflammation host's
4
host's defense
4
defense mechanism
4
mechanism infection
4

Similar Publications

Endogenous metabolite N-chlorotaurine attenuates antiviral responses by facilitating IRF3 oxidation.

Redox Biol

January 2025

Department of Pathogenic Biology, Key Laboratory of Infection and Immunity of Shandong Province, and Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. Electronic address:

Cellular microenvironments critically control the activation of innate immune responses. N-chlorotaurine (Tau-Cl) is an endogenous metabolite that is markedly produced and secreted during pathogenic invasion. However, its effect on the antiviral innate immune responses remains unclear.

View Article and Find Full Text PDF

[Advances in the study of viruses inhibiting the production of advanced autophagy or interferon through Rubicon to achieve innate immune escape].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:

The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.

View Article and Find Full Text PDF

[Research progress on the role of efferocytosis in liver diseases].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Central Laboratory, Chengdu University of TCM, School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, China.

Efferocytosis refers to the process of phagocytes engulfing and clearing the cells after programmed cell death. In recent years, an increasing number of studies have shown that the mechanisms of efferocytosis are closely related to drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, cholestatic liver diseases, metabolic-associated fatty liver disease, alcoholic liver disease, and other liver disorders. This review summarized the research progress on the role of efferocytosis in liver diseases, with the hope of providing new targets for the prevention and treatment of liver diseases.

View Article and Find Full Text PDF

Phagocytosis by macrophages decreases the radiance of bioluminescent Staphylococcus aureus.

BMC Microbiol

January 2025

Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, The Netherlands.

Article Synopsis
  • The study investigates how the bioluminescence of Staphylococcus aureus changes when it is engulfed by macrophages, showing a reduction in light production compared to bacteria in culture.
  • The bacterial count remains stable during this process, but bioluminescence increases again when bacteria are released after macrophage cell death or when fresh macrophages are added.
  • These findings highlight the need to consider intracellular residency effects on bioluminescence when using imaging techniques to study infections in live animals.
View Article and Find Full Text PDF

Evolution of Omicron lineage towards increased fitness in the upper respiratory tract in the absence of severe lung pathology.

Nat Commun

January 2025

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

The emergence of the Omicron lineage represented a major genetic drift in SARS-CoV-2 evolution. This was associated with phenotypic changes including evasion of pre-existing immunity and decreased disease severity. Continuous evolution within the Omicron lineage raised concerns of potential increased transmissibility and/or disease severity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!