Computer modeling of cardiac propagation suggests that curvature of muscle fibers modulates conduction velocity (CV). The effect could be involved in arrhythmogenesis by altering the dynamics of reentrant wavefronts or by causing propagation block. To verify the existence of this effect experimentally, we measured CV in anisotropic neonatal rat ventricular myocyte monolayers. The orientation of the cells was directed by scratches machined into plastic coverslips. Each substrate contained a region in which scratch radius of curvature varied from 0.25 to 1.0 cm. The CV anisotropy ratio (longitudinal CV/transverse CV in straight fiber regions) was 2.3 +/- 0.3 (n = 38). We initiated wavefronts transverse to fibers with the fibers either curving toward or away from the wavefronts. Action potentials were recorded using a potentiometric dye and a video camera. Propagation was faster (p = 0.0003) when fibers curved toward wavefronts than when fibers curved in the opposite direction. The mean CV difference was 0.38 +/- 0.44 cm/s (n = 24), which is 3.5% of nominal straight fiber transverse CV (11.0 +/- 3.2 cm/s). The effect was also present (p = 0.07) when pacing was slowed from 350 to 500 ms (n = 6). In a control group (n = 8) with uncurved fibers, CV was the same in both directions (p = NS). We conclude that fiber curvature is a factor in modulating cardiac propagation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689384PMC
http://dx.doi.org/10.1109/TBME.2008.2007501DOI Listing

Publication Analysis

Top Keywords

conduction velocity
8
fiber curvature
8
neonatal rat
8
rat ventricular
8
cardiac propagation
8
straight fiber
8
fibers curved
8
fibers
6
change conduction
4
fiber
4

Similar Publications

Background: While muscle contractility increases with muscle temperature, there is no consensus on the best warm-up protocol to use before resistance training or sports exercise due to the range of possible warm-up and testing combinations available. Therefore, the objective of the current study was to determine the effects of different warm-up types (active, exercise-based vs. passive) on muscle function tested using different activation methods (voluntary vs.

View Article and Find Full Text PDF

Introduction: Vosoritide is the first approved treatment for achondroplasia, a rare genetic disorder that results in disproportionate short stature. In clinical trials, vosoritide has shown a positive safety profile and increased height in children with achondroplasia. This paper shares the organizational structure, initiation, follow-up protocol, and findings of a vosoritide early access program (EAP) conducted in France.

View Article and Find Full Text PDF

A New target of ischemic ventricular arrhythmias-ITFG2.

Eur J Pharmacol

January 2025

Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian 361023, P. R. China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China. Electronic address:

ITFG2 is an intracellular protein known to modulate the immune response of T-cells. Our previous investigation revealed that ITFG2 specifically targets ATP5b to regulate ATP energy metabolism and maintain mitochondrial function, thereby protecting the heart from ischemic injury. However, the role of ITFG2 in ischemic ventricular arrhythmias and its underlying mechanisms have not been previously reported.

View Article and Find Full Text PDF

Review of upper extremity passive joint impedance identification in people with Duchenne Muscular Dystrophy.

J Neuroeng Rehabil

January 2025

Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, South-Holland, The Netherlands.

Duchenne Muscular Dystrophy (DMD) progressively leads to loss of limb function due to muscle weakness. The incurable nature of the disease shifts the focus to improving quality of life, including assistive supports to improve arm function. Over time, the passive joint impedance (Jimp) of people with DMD increases.

View Article and Find Full Text PDF

Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!