Black poplar wood, diethylene glycol (DEG), and sulphuric acid as a catalyst were used as starting reactants for liquefaction. Optimal conditions for liquefaction were established: reaction temperature 150 degrees C, reaction time 95min, ratio of wood:DEG=1:5 and 3% of sulphuric acid addition. The liquid mixture obtained by the liquefaction was composed of the real product of the reaction (the so called "excess solvent free liquefied wood" (ESFLW)) and of the remaining unreacted DEG. The unreacted DEG was successfully separated from the ESFLW and analysed with HPLC for levulinic acid content. Theoretical weight ratio between the wood and DEG required for the reaction was estimated. OH number investigation showed that the ESFLW in the liquid mixture contributes to maximally 60% of the free_OH groups. The crosslinking of the ESFLW without any curing agents or additives was performed for the first time, and the drying stages investigated. FT-IR investigations demonstrated that the obtained crosslinked polymer film could be an ether and/or ester network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2009.02.004 | DOI Listing |
Plant Cell Environ
January 2025
Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, Western Australia, Australia.
Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:
In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
The basic helix-loop-helix (bHLH) family members are involved in plant growth and development, physiological metabolism, and various stress response processes. is a major turpentine-producing and wood-producing tree in seasonally dry areas of southern China. Its economic and ecological values are well known.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory for Forest Genetics and Tree Improvement and Propagation in University of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
Plant protease inhibitors are a ubiquitous feature of plant species and exert a substantial influence on plant stress responses. However, the (Kunitz trypsin inhibitor) family responding to abiotic stress has not been fully characterized in . In this study, we conducted a genome-wide study of the family and analyzed their gene structure, gene duplication, conserved motifs, cis-acting elements, and response to stress treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!