Several studies focused on the characterization of bulge keratinocytes have proved that they are multipotent stem cells, being recruited not only to regenerate the hair follicle itself, but also the sebaceous gland and the epidermis. However, due to the difficulty in preparing transplantable cell sheets harvested with conventional enzymatic digestion, there is still no direct evidence of the bulge stem cells' multipotency. Whether they can respond to adult dermal papilla (DP) signals in recombination experiments also remains unclear. In this study, we addressed this problem by culturing and detaching intact bulge keratinocyte sheets from thermo-responsive culture dishes, only by reducing its temperature. When sheets of mass cultured bulge keratinocytes isolated from rat vibrissa follicles were recombined with fresh adult DPs and sole skin dermis in vivo, regeneration of epidermis and sebaceous gland-like structures, and formation of hair bulb with differentiating inner root sheath and hair cuticle were observed within 3 weeks. However, regardless the expression of stem cells markers like CD34, SA1004 and SA1006, no structures were observed when cloned bulge keratinocytes were used to prepare cell sheets and recombinants, revealing the possible existence of monoclonal stem cells within the bulge region. This report is the first to succeed in harvesting adult bulge keratinocyte sheets. Using these sheets it is demonstrated that bulge stem cells directly respond to adult DP signals to induce hair bulb formation in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.diff.2008.10.010 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified.
View Article and Find Full Text PDFACS Nano
January 2025
School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China.
Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment.
View Article and Find Full Text PDFChem Biodivers
January 2025
Vietnam National University Hanoi, VNU University of Science, 19 Le Thanh Tong, Hoankiem, VIET NAM.
The current study first describes the chemical profiles of essential oils from Vietnamese Chromolaena odorata fresh stem barks and leaves. The gas chromatography-flame inonization detection/mass spectrometry (GC-FID/MS) analysis revealed that α-pinene (6.97-38.
View Article and Find Full Text PDFBiol Cell
January 2025
Institut supérieur de philosophie, UCLouvain, Louvain-la-Neuve, Belgium.
The advancement of and prospects for stem cell research raise a number of specific ethical issues. While navigating the ethical landscape of stem cell research is often challenging for biology researchers and biotechnology innovators, it is also difficult for the public and other persons of concern (from ethicists to policy-makers) to grasp the technicalities of a burgeoning field that develops in many directions. Organoids are one of these new biotechnological constructs that are currently eliciting a rich debate in bioethics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!