The development of most, if not all, tubular organs is dependent on signaling between epithelial and stromal progenitor populations. Most often, these lineages derive from different germ layers that are specified during gastrulation, well in advance of organ condensation. Thus, one of the first stages of organogenesis is the integration of distinct progenitor populations into a single embryonic rudiment. In contrast, the stromal and epithelial lineages controlling renal development are both believed to derive from the intermediate mesoderm and to be specified as the kidney develops. In this study we directly analyzed the lineage of renal epithelia and stroma in the developing chick embryo using two independent fate mapping techniques. Results of these experiments confirm the hypothesis that nephron epithelia derive from the intermediate mesoderm. Most importantly, we discovered that large populations of renal stroma originate in the paraxial mesoderm. Collectively, these studies suggest that the signals that subdivide mesoderm into intermediate and paraxial domains may play a role in specifying nephron epithelia and a renal stromal lineage. In addition, these fate mapping data indicate that renal development, like the development of all other tubular organs, is dependent on the integration of progenitors from different embryonic tissues into a single rudiment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677135 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2009.02.034 | DOI Listing |
Stem Cell Reports
December 2024
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research at MIT, 500 Main St, Cambridge, MA 02142, USA. Electronic address:
Heparan sulfate (HS) is an anionic polysaccharide generated by all animal cells, but our understanding of its roles in human pluripotent stem cell (hPSC) self-renewal and differentiation is limited. We derived HS-deficient hPSCs by disrupting the EXT1 glycosyltransferase. These EXT1 hPSCs maintain self-renewal and pluripotency under standard culture conditions that contain high levels of basic fibroblast growth factor(bFGF), a requirement for sufficient bFGF signaling in the engineered cells.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207-7102, United States.
Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Diagnostic Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, China.
Fibroepithelial polyps are rare benign tumors originating from the mesoderm and are more commonly found in the renal pelvis and distal ureter and less frequently in the proximal ureter or bladder. This case report presents a fibroepithelial polyp occurring in the bladder of the fetus, showcasing its two-dimensional ultrasound, three-dimensional ultrasound, color Doppler, and spectral Doppler ultrasound findings, providing a reference for the accurate diagnosis of this condition.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
Frontotemporal dementia with parkinsonism-17 is a neurodegenerative disease characterised by pathological aggregation of the tau protein with the formation of neurofibrillary tangles and subsequent neuronal death. The inherited form of frontotemporal dementia can be caused by mutations in several genes, including the MAPT gene on chromosome 17, which encodes the tau protein. As there are currently no medically approved treatments for frontotemporal dementia, there is an urgent need for research using in vitro cell models to understand the molecular genetic mechanisms that lead to the development of the disease, to identify targets for therapeutic intervention and to test potential drugs to prevent neuronal death.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
Background: The simultaneous differentiation of human pluripotent stem cells (hPSCs) into both endodermal and mesodermal lineages is crucial for developing complex, vascularized tissues, yet poses significant challenges. This study explores a method for co-differentiation of mesoderm and endoderm, and their subsequent differentiation into pancreatic progenitors (PP) with endothelial cells (EC).
Methods: Two hPSC lines were utilized.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!