Although inhibition of glutathione reductase (GR) has been demonstrated to cause a decrease in reduced glutathione (GSH) and increase in glutathione disulfide (GSSG), a systematic study of the effects of GR inhibition on thiol redox state and related systems has not been noted. By employing a monkey kidney cell line as the cell model and 2-acetylamino-3-[4-(2-acetylamino-2-carboxy-ethylsulfanylthio carbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA) as a GR inhibitor, an investigation of the effects of GR inhibition on cellular thiol redox state and related systems was conducted. Our study demonstrated that, in addition to a decrease in GSH and increase in GSSG, 2-AAPA increased the ratios of NADH/NAD(+) and NADPH/NADP(+). Significant protein glutathionylation was observed. However, the inhibition did not affect the formation of reactive oxygen species or expression of antioxidant defense enzyme systems [GR, glutathione peroxidase, catalase, and superoxide dismutase] and enzymes involved in GSH biosynthesis [gamma-glutamylcysteine synthetase and glutathione synthetase].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709784PMC
http://dx.doi.org/10.1016/j.abb.2009.03.001DOI Listing

Publication Analysis

Top Keywords

thiol redox
12
redox state
12
state systems
12
glutathione reductase
8
inhibition cellular
8
cellular thiol
8
gsh increase
8
effects inhibition
8
inhibition
5
glutathione
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!