The Fenton process, mixed by hydrogen peroxide and iron salts with highly oxidative effect, is recognized as one of powerful advanced oxidation technologies available and can be used to destroy a variety of persistent organic pollutants. The oxidation power of Fenton reagent is due to the generation of hydroxyl radical (* OH) during the iron catalysed decomposition of hydrogen peroxide in acid medium. The hydroxyl radical with a high oxidation potential (2.8 eV) attacks and completely destroys the pollutants in Fenton process. The degradation of pollutants can be considerably improved by using sunlight radiation, which is due to the generation of additional hydroxyl radicals. This photo-Fenton process had been effectively used to degrade the pollutants. In this paper, the definite quantity of Fenton reagent was added in the definite concentration of Rhodamine B solution. The degradation reaction was carried out at pH 3.5 under natural sunlight. The factors influencing on photocatalytic oxidation degradation rate of Rhodamine B were studied following: the initial concentration of Rhodamine B, initial concentrateions of Fe2+ and H2O2. The orders of degradation reaction were obtained by solving exponential kinetics equations of curve fitting, thereby gaining the kinetic parameters and reaction dynamics equation of the reaction system. The research contents included mainly: the UV-Vis spectra of Rhodamine B solution, the concentration-absorbency work curve of Rhodamine B solution, the analysis of the reaction system at various initial Rhodamine B concentrations, the analysis of the reaction system at various initial Fe2+ concentrateions, the analysis of the reaction system at various initial H2O2 concentrations, and the calculation of the apparent kinetics parameters in reaction dynamics equation. The reaction dynamics equation from experiments was constructed: V = 5 x 10(-9) P1.28 F0.366 E0.920, and overall reaction order was 2.57.
Download full-text PDF |
Source |
---|
BMC Vet Res
January 2025
College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
Background: Aleutian mink disease, mink viral enteritis and canine distemper are known as the three most serious diseases that cause great economic loss in the mink industry. In clinical practice, aleutian mink disease virus (AMDV), mink enteritis virus (MEV) and canine distemper virus (CDV) are common mixed infections, and they have similar clinical clinical signs, such as diarrhoea. Therefore, a rapid and accurate differential diagnosis method for use on mink ranches is essential for the control of these three pathogens.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, 21702, United States of America.
Background: Point of need diagnostics provide efficient testing capability for remote or austere locations, decreasing the time to answer by minimizing travel or sample transport requirements. Loop-mediated isothermal amplification (LAMP) is an appealing technology for point-of-need diagnostics due to its rapid analysis time and minimal instrumentation requirements.
Methods: Here, we designed and optimized nine LAMP assays that are sensitive and specific to targeted bacterial select agents including Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Brucella spp.
Nat Commun
January 2025
Department of Chemistry, University of Helsinki, Helsinki, Finland.
Secondary organic aerosols (SOAs) significantly impact Earth's climate and human health. Although the oxidation of volatile organic compounds (VOCs) has been recognized as the major contributor to the atmospheric SOA budget, the mechanisms by which this process produces SOA-forming highly oxygenated organic molecules (HOMs) remain unclear. A major challenge is navigating the complex chemical landscape of these transformations, which traditional hypothesis-driven methods fail to thoroughly investigate.
View Article and Find Full Text PDFNPJ Syst Biol Appl
January 2025
The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
Recent emphasis on the development of safe-and-sustainable-by-design chemicals highlights the need for methods facilitating the early assessment of persistence. Activated sludge experiments have been proposed as a time- and resource-efficient way to predict half-lives in simulation studies. Here, this persistence "read-across" approach was developed to be more broadly and robustly applicable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!