Accumulating data point to K(+) channels as relevant players in controlling cell cycle progression and proliferation of human cancer cells, including prostate cancer (PCa) cells. However, the mechanism(s) by which K(+) channels control PCa cell proliferation remain illusive. In this study, using the techniques of molecular biology, biochemistry, electrophysiology and calcium imaging, we studied the expression and functionality of intermediate-conductance calcium-activated potassium channels (IK(Ca1)) in human PCa as well as their involvement in cell proliferation. We showed that IK(Ca1) mRNA and protein were preferentially expressed in human PCa tissues, and inhibition of the IK(Ca1) potassium channel suppressed PCa cell proliferation. The activation of IK(Ca1) hyperpolarizes membrane potential and, by promoting the driving force for calcium, induces calcium entry through TRPV6, a cation channel of the TRP (Transient Receptor Potential) family. Thus, the overexpression of the IK(Ca1) channel is likely to promote carcinogenesis in human prostate tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/onc.2009.25 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!