Symbiotic use of pathogenic strategies: rhizobial protein secretion systems.

Nat Rev Microbiol

LBMPS, University of Geneva, 30, quai Ernest-Ansermet - Sciences III, CH-1211 Genève 4, Geneva, Switzerland.

Published: April 2009

Rhizobia - a diverse group of soil bacteria - induce the formation of nitrogen-fixing nodules on the roots of legumes. Nodulation begins when the roots initiate a molecular dialogue with compatible rhizobia in the soil. Most rhizobia reply by secreting lipochitooligosaccharidic nodulation factors that enable entry into the legume. A molecular exchange continues, which, in compatible interactions, permits rhizobia to invade root cortical cells, differentiate into bacteroids and fix nitrogen. Rhizobia also use additional molecular signals, such as secreted proteins or surface polysaccharides. One group of proteins secreted by rhizobia have homologues in bacterial pathogens and may have been co-opted by rhizobia for symbiotic purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrmicro2091DOI Listing

Publication Analysis

Top Keywords

rhizobia
7
symbiotic pathogenic
4
pathogenic strategies
4
strategies rhizobial
4
rhizobial protein
4
protein secretion
4
secretion systems
4
systems rhizobia
4
rhizobia diverse
4
diverse group
4

Similar Publications

Dual Oxygen-Responsive Control by RegSR of Nitric Oxide Reduction in the Soybean Endosymbiont .

Antioxid Redox Signal

January 2025

Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain.

To investigate the role of the RegSR-NifA regulatory cascade in the oxygen control of nitric oxide (NO) reduction in the soybean endosymbiont . We have performed an integrated study of expression and NO reductase activity in , , , , and mutants in response to microoxia (2% O) or anoxia. An activating role of RegR and NifA was observed under anoxia.

View Article and Find Full Text PDF

Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.

View Article and Find Full Text PDF

It is well known that individual pea ( L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi.

View Article and Find Full Text PDF

Legumes play a pivotal role in addressing global challenges of food and nutrition security by offering a sustainable source of protein and bioactive compounds. The capacity of legumes to establish symbiotic relationships with rhizobia bacteria enables biological nitrogen fixation (BNF), reducing the dependence on chemical fertilizers while enhancing soil health. However, the efficiency of this symbiosis is significantly influenced by environmental factors, such as soil acidity, salinity, temperature, moisture content, light intensity, and nutrient availability.

View Article and Find Full Text PDF

Megoura crassicauda promote the ability of Vicia faba L. to remediate cadmium pollution of water and soil.

Ecotoxicol Environ Saf

January 2025

College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. Electronic address:

With the increasing severity of heavy metal pollution in soil and water, phytoremediation is becoming increasingly popular because of its low cost, high returns, and environmental friendliness. The use of leguminous plants such as the broad bean for heavy metal remediation is becoming a research hotspot because of their symbiotic relationship with rhizobia. This study investigated the cadmium (Cd) remediation ability of fava beans by M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!