The nuclear receptor retinoid X receptor-alpha (RXR-alpha)-peroxisome proliferator-activated receptor-gamma (PPAR-gamma) heterodimer was recently reported to have a crucial function in mediating the deleterious effects of organotin compounds, which are ubiquitous environmental contaminants. However, because organotins are unrelated to known RXR-alpha and PPAR-gamma ligands, the mechanism by which these compounds bind to and activate the RXR-alpha-PPAR-gamma heterodimer at nanomolar concentrations has remained elusive. Here, we show that tributyltin (TBT) activates all three RXR-PPAR-alpha, -gamma, -delta heterodimers, primarily through its interaction with RXR. In addition, the 1.9 A resolution structure of the RXR-alpha ligand-binding domain in complex with TBT shows a covalent bond between the tin atom and residue Cys 432 of helix H11. This interaction largely accounts for the high binding affinity of TBT, which only partly occupies the RXR-alpha ligand-binding pocket. Our data allow an understanding of the binding and activation properties of the various organotins and suggest a mechanism by which these tin compounds could affect other nuclear receptor signalling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2672886PMC
http://dx.doi.org/10.1038/embor.2009.8DOI Listing

Publication Analysis

Top Keywords

nuclear receptor
8
rxr-alpha ligand-binding
8
activation rxr-ppar
4
rxr-ppar heterodimers
4
heterodimers organotin
4
organotin environmental
4
environmental endocrine
4
endocrine disruptors
4
disruptors nuclear
4
receptor retinoid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!