Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tacrolimus (FK506) has been used as a therapeutic drug beneficial for the treatment of rheumatoid arthritis in humans. In this study, we investigated the effects of FK506 on cellular differentiation in cultured chondrogenic cells. Culture with FK506 led to a significant and concentration-dependent increase in Alcian blue staining for matrix proteoglycan at 0.1 to 1,000 ng/ml, but not in alkaline phosphatase (ALP) activity, in ATDC5 cells, a mouse pre-chondrogenic cell line, cultured for 7 to 28 days, while the non-steroidal anti-inflammatory drug indomethacin significantly decreased Alcian blue staining in a concentration-dependent manner, without altering ALP activity. FK506 significantly increased the expression of mRNA for both type II and type X collagen, but not for osteopontin, in ATDC5 cells. Similar promotion was seen in chondrogenic differentiation in both mouse metatarsals and chondrocytes cultured with FK506. However, FK506 failed to significantly affect transcriptional activity of the reporter construct for either sry-type HMG box 9 (Sox9) or runt-related transcription factor-2 (Runx2), which are both transcription factors responsible for chondrocytic maturation as a master regulator. These results suggest that FK506 may predominantly promote cellular differentiation into proliferating chondrocytes through a mechanism not relevant to the transactivation by either Sox9 or Runx2 in chondrogenic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1254/jphs.08315fp | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!