An increment of alanine aminotransferase (ALT) or aspartate aminotransferase (AST) in human serum indicates an abnormal symptom of the liver. Hence, an electrochemical biosensor array that uses micro electro mechanical systems technology is required for rapid and integrated measurement of ALT/AST. Here we describe a biosensor array consisting of two glutamate sensors. It turned out that porous silicon layers formed on each working electrode were useful to increase the effective surface area. This biosensor array was constructed with platinum electrodes and a polydimethylsiloxane (PDMS) microchannel. Electrodes in sampling wells minimized a cross-interference effect and permitted multiple sampling by immobilization with glutamate oxidase using a silanization technique. The device sensitivities derived from semi-logarithmic plots were 0.145 microA/(U/l) for ALT and 0.463 microA/(U/l) for AST over a range of 1.3 U/l to 250 U/l. Hene, this ALT/AST biosensor array can be applied in diagnostic and home use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1271/bbb.60043 | DOI Listing |
Nat Commun
December 2024
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.
Early disease diagnosis hinges on the sensitive detection of signaling molecules. Among these, hydrogen sulfide (HS) has emerged as a critical player in cardiovascular and nervous system signaling. On-chip immunoassays, particularly nanoarray-based interfacial detection, offer promising avenues for ultra-sensitive analysis due to their confined reaction volumes and precise signal localization.
View Article and Find Full Text PDFTalanta
December 2024
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China. Electronic address:
Sensitive and accurate determination of tumour biomarkers is extremely important for early cancer diagnosis. Herein, a photoelectrochemical biosensor platform was constructed for ultrasensitive tumour biomarker detection by utilizing Au@CuO to switch the photocurrent polarity of CdS/Ni-catecholates metal-organic framework (Ni-CAT) nanorod arrays grown in situ on ITO. The Ni-CAT obtains close contact with ITO and forms a Z-scheme heterojunction with CdS, which improves the photogenerated electron transfer ability.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China.
Antibiotics, celebrated as some of the most significant pharmaceutical breakthroughs in medical history, are capable of eliminating or inhibiting bacterial growth, offering a primary defense against a wide array of bacterial infections. However, the rise in antimicrobial resistance (AMR), driven by the widespread use of antibiotics, has evolved into a widespread and ominous threat to global public health. Thus, the creation of efficient methods for detecting resistance genes and antibiotics is imperative for ensuring food safety and safeguarding human health.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China.
Sarcopenia has been a serious concern in the context of an increasingly aging global population. Existing detection methods for sarcopenia are severely constrained by cumbersome devices, the necessity for specialized personnel, and controlled experimental environments. In this study, we developed an innovative wearable fabric system based on conductive fabric and flexible sensor array.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Two-dimensional materials with a nanostructure have been introduced as promising candidates for SERS platforms for sensing application. However, the dynamic control and tuning of SERS remains a long-standing problem. Here, we demonstrated active tuning of the enhancement factor of the first- and second-order Raman mode of monolayer (1L) MoS transferred onto a flexible metallic nanotip array.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!