Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients represent a powerful tool for biomedical research and may provide a source for replacement therapies. However, the use of viruses encoding the reprogramming factors represents a major limitation of the current technology since even low vector expression may alter the differentiation potential of the iPSCs or induce malignant transformation. Here, we show that fibroblasts from five patients with idiopathic Parkinson's disease can be efficiently reprogrammed and subsequently differentiated into dopaminergic neurons. Moreover, we derived hiPSCs free of reprogramming factors using Cre-recombinase excisable viruses. Factor-free hiPSCs maintain a pluripotent state and show a global gene expression profile, more closely related to hESCs than to hiPSCs carrying the transgenes. Our results indicate that residual transgene expression in virus-carrying hiPSCs can affect their molecular characteristics and that factor-free hiPSCs therefore represent a more suitable source of cells for modeling of human disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787236 | PMC |
http://dx.doi.org/10.1016/j.cell.2009.02.013 | DOI Listing |
Free Radic Biol Med
December 2024
Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea. Electronic address:
Glioblastoma (GBM) remains a formidable clinical challenge, with cancer stem cells (CSCs) contributing to treatment resistance and tumor recurrence. Conventional treatments often fail to eradicate these CSCs characterized by enhanced resistance to standard therapies through metabolic plasticity making them key targets for novel treatment approaches. Addressing this challenge, this study introduces a novel combination therapy of dichloroacetate (DCA), a metabolic modulator and nonthermal plasma to induce oxidative stress in glioblastomas.
View Article and Find Full Text PDFCancer Commun (Lond)
December 2024
Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, Massachusetts, USA.
Background: Adaptative desaturation in fatty acid (FA) is an emerging hallmark of cancer metabolic plasticity. Desaturases such as stearoyl-CoA desaturase (SCD) and fatty acid desaturase 2 (FADS2) have been implicated in multiple cancers, and their dominant and compensatory effects have recently been highlighted. However, how tumors initiate and sustain their self-sufficient FA desaturation to maintain phenotypic transition remains elusive.
View Article and Find Full Text PDFCurr Opin Genet Dev
December 2024
Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden; Wallenberg Center for Molecular Medicine at Lund University, BMC A12, 221 84 Lund, Sweden; Asgard Therapeutics AB, Medicon Village, 223 81 Lund, Sweden; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal, 3004-517 Coimbra, Portugal. Electronic address:
Antigen-presenting cells (APCs) are a heterogenous group of immune cells composed by dendritic cells (DCs) and macrophages (Mϕ), which are critical for orchestrating immunity against cancer or infections. Several strategies have been explored to generate APC subsets, including enrichment from peripheral blood and differentiation from pluripotent or multipotent cells. During development, the generation of APC subsets is instructed by transcription factors (TFs).
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
Silicosis is a fatal occupational pulmonary disease that is characterized by irreversible replacement of lung parenchyma by aberrant Exracellular matrix (ECM). Metabolic reprogramming is a crucial mechanism for fibrosis. However, how the metabolic rewiring shifts the ECM homeostasis toward overaccumulation remains unclear.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2024
McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) can be achieved by ectopic expression of cardiac transcription factors (TFs) via viral vectors. However, risks like genomic mutations, viral toxicity, and immune response limited its clinical application. Transactivation of endogenous TFs emerges as an alternative approach that may partially mitigate some of the risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!