Most of the studies carried out on Fe deficiency condition in arboreous plants have been performed, with the exception of those carried out on plants grown in the field, in hydroponic culture utilizing a total iron depletion growth condition. This can cause great stress to plants. By introducing Fe deficiency induced by the presence of bicarbonate, we found significant differences between Pyrus communis L. cv. Conference and Cydonia oblonga Mill. BA29 and MA clones, characterized by different levels of tolerance to chlorosis. Pigment content and the main protein-pigment complexes were investigated by HPLC and protein gel blot analysis, respectively. While similar changes in the structural organization of photosystems (PSs) were observed in both species under Fe deficiency, a different reorganization of the photosynthetic apparatus was found in the presence of bicarbonate between tolerant and susceptible genotypes, in agreement with the photosynthetic electron transport rate measured in isolated thylakoids. In order to characterize the intrinsic factors determining the efficiency of iron uptake in a tolerant genotype, the main mechanisms induced by Fe deficiency in Strategy I species, such as Fe3+-chelate reductase (EC 1.16.1.7) and H+-ATPase (EC 3.6.3.6) activities, were also investigated. We demonstrate that physiological and biochemical root responses in quince and pear are differentially affected by iron starvation and bicarbonate supply, and we show a high correlation between tolerance and Strategy I activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2009.01.007 | DOI Listing |
Nat Metab
January 2025
Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.
Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.
View Article and Find Full Text PDFCell Death Differ
January 2025
Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China.
Cancer stem cells (CSCs) typically reside in perivascular niches, but whether endothelial cells of blood vessels influence the stemness of cancer cells remains poorly understood. This study revealed that endothelial cell-specific GLTSCR1 deletion promotes colorectal cancer (CRC) tumorigenesis and metastasis by increasing cancer cell stemness. Mechanistically, knocking down GLTSCR1 induces the transformation of endothelial cells into tip cells by regulating the expression of Neuropilin-1 (NRP1), thereby increasing the direct contact and interaction between endothelial cells and tumour cells.
View Article and Find Full Text PDFCell Death Dis
January 2025
Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.
View Article and Find Full Text PDFIntroduction: The infarcted heart is energetically compromised exhibiting a deficient production of adenosine triphosphate (ATP) and the ensuing impaired contractile function. Short-term blockade of the protein S100A9 improves cardiac performance in mice after myocardial infarction (MI). The implications upon ATP production during this process are not known.
View Article and Find Full Text PDFBrain Behav Immun
January 2025
Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA. Electronic address:
Preclinical and clinical studies have established that autoreactive immunoglobulin G (IgG) can drive neuropathic pain. We recently demonstrated that sciatic nerve chronic constriction injury (CCI) in male and female mice results in the production of pronociceptive IgG, which accumulates around the lumbar region, including within the dorsal root ganglia (DRG) and spinal cord, facilitating the development of neuropathic pain. These data raise the intriguing possibility that neuropathic pain may be alleviated by reducing the accumulation of IgG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!