Value of captive populations for quantitative genetics research.

Trends Ecol Evol

Centre for Population Biology, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, UK.

Published: May 2009

Evolutionary biologists have usefully applied quantitative genetics methods to the pedigrees of wild animals to understand how natural selection shapes phenotypic diversity in nature. Despite recent reviews on the importance of rapid evolutionary changes for conservation biology and the increasing concerns about potentially adverse effects of adaptation to captivity for wild species, the integration of evolutionary-based knowledge into conservation programs remains elusive. Here we review the value of long-term pedigrees and associated phenotypic data of captive stocks for evolutionary research and conservation programs. We emphasize that using zoological records to assess quantitative genetics parameters represents a promising avenue to study adaptation to captivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tree.2008.11.013DOI Listing

Publication Analysis

Top Keywords

quantitative genetics
12
adaptation captivity
8
conservation programs
8
captive populations
4
populations quantitative
4
genetics evolutionary
4
evolutionary biologists
4
biologists applied
4
applied quantitative
4
genetics methods
4

Similar Publications

Background Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects about a third of adults worldwide and is projected soon to be the leading cause of cirrhosis. It occurs when fat accumulates in hepatocytes and can progress to metabolic dysfunction-associated steatohepatitis (MASH), liver cirrhosis, and hepatocellular carcinoma. MASLD pathogenesis is believed to involve a combination of genetic and environmental risk factors.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Comparative analysis of antibiotic resistance genes between fresh pig manure and composted pig manure in winter, China.

PLoS One

January 2025

School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng, China.

Antibiotic resistance is a critical global public health issue. The gut microbiome acts as a reservoir for numerous antibiotic resistance genes (ARGs), which influence both existing and future microbial populations within a community or ecosystem. However, the differences in ARG expression between fresh and composted feces remain poorly understood.

View Article and Find Full Text PDF

Background: Bipolar Disorder (BD) is a complex disease. It is heterogeneous, both at the phenotypic and genetic level, although the extent and impact of this heterogeneity is not fully understood. One way to assess this heterogeneity is to look for patterns in the subphenotype data.

View Article and Find Full Text PDF

The genetic architecture of resistance to flubendiamide insecticide in Helicoverpa armigera (Hübner).

PLoS One

January 2025

Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil.

Insecticide resistance is a major problem in food production, environmental sustainability, and human health. The cotton bollworm Helicoverpa armigera is a globally distributed crop pest affecting over 300 crop species. H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!